SUMMARY REPORT 116 ELDERBERRY DRIVE (FORMERLY 411 ELDERBERRY DRIVE) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

> Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid-Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

JUNE 2021

SUMMARY REPORT 116 ELDERBERRY DRIVE (FORMERLY 411 ELDERBERRY DRIVE) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

> Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid- Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic

9324 Virginia Avenue Norfolk, Virginia 23511-3095

Prepared by:

CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 22030

Contract Number: N62470-14-D-9016 CTO WE52 JUNE 2021

Table of Contents

1.0	INTRODUCTION	. 1
1.1 1.2	Background Information UST Removal and Assessment Process	
2.0	SAMPLING ACTIVITIES AND RESULTS	. 3
2.1 2.2	UST REMOVAL AND SOIL SAMPLING	
3.0	PROPERTY STATUS	. 4
4.0	REFERENCES	. 4

Table

Table 1	Laboratory	Analytical	Results - Soil
	Laboratory	ranaryticar	Results Soll

Appendices

- Appendix A Multi-Media Selection Process for LBMH
- Appendix B UST Assesment Report
- Appendix C Regulatory Correspondence

List of Acronyms

bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
СТО	Contract Task Order
COPC	constituents of potential concern
IDIQ	Indefinite Delivery, Indefinite Quantity
IGWA	Initial Groundwater Assessment
JV	Joint Venture
LBMH	Laurel Bay Military Housing
MCAS	Marine Corps Air Station
NAVFAC Mid-Lant	Naval Facilities Engineering Command Mid-Atlantic
NFA	No Further Action
PAH	polynuclear aromatic hydrocarbon
QAPP	Quality Assurance Program Plan
RBSL	risk-based screening level
SCDHEC	South Carolina Department of Health and Environmental Control
Site	LBMH area at MCAS Beaufort, South Carolina
UST	underground storage tank
VISL	vapor intrusion screening level

1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).

As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 116 Elderberry Drive (Formerly 411 Elderberry Drive). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil USTs. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing units, including legacy Capehart style homes and newer duplex style homes. The housing area

is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan (QAPP) for the Underground Storage Tank Management Division, Revision 3.1* (SCDHEC, 2016) and the *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service,* (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management*

Division (SCDHEC, 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the OAPP (SCDHEC, 2013) and were revised again in Revision 3.0 (SCDHEC, 2015). The screening levels used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.

The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The results of the IGWA sampling (if necessary) are used to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations will require additional delineation of COPCs in groundwater. In order to delineate the extent of impact to groundwater, permanent wells are installed and a sampling program is established for those former UST locations where IGWA sampling has indicated the presence of COPCs in excess of the SCDHEC RBSLs for groundwater. Groundwater analytical results are also compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion and the necessity for an investigation associated with this media. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 116 Elderberry Drive (Formerly 411 Elderberry Drive). Details regarding the soil investigation at this site are provided in the *SCDHEC UST Assessment Report – 411 Elderberry Drive* (MCAS Beaufort, 2012). The UST Assessment Report is provided in Appendix B.

2.1 UST Removal and Soil Sampling

On May 10, 2012, a single 280 gallon heating oil UST was removed from the landscaped area adjacent to the driveway at 116 Elderberry Drive (Formerly 411 Elderberry Drive). The UST location is indicated on Figures 2 and 3 of the UST Assessment Report (Appendix B). The UST was removed and properly disposed of (i.e., shipped offsite for recycling or transported to a landfill). There was no visual evidence (i.e., staining or sheen) of petroleum impact at the time of the UST removal. According to the UST Assessment Report (Appendix B), the depth to the base of the UST was 6'4" bgs and a single soil sample was collected from that depth. The

sample was collected from the fill port side of the former UST to represent a worst case scenario.

Following UST removal, a soil sample was collected from the base of the excavation and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 1. A copy of the laboratory analytical data report is included in the UST Assessment Report presented in Appendix B. The laboratory analytical data report includes the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST location were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or NFA) for the property. The soil results collected from 116 Elderberry Drive (Formerly 411 Elderberry Drive) were less than the SCDHEC RBSLs, which indicated the subsurface was not impacted by COPCs associated with the former UST at concentrations that presented a potential risk to human health and the environment.

3.0 PROPERTY STATUS

Based on the analytical results for soil, SCDHEC made the determination that NFA was required for 116 Elderberry Drive (Formerly 411 Elderberry Drive). This NFA determination was obtained in a letter dated May 15, 2014. SCDHEC's NFA letter is provided in Appendix C.

4.0 REFERENCES

- Marine Corps Air Station Beaufort, 2012. South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report – 411 Elderberry Drive, Laurel Bay Military Housing Area, August 2012.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.

- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations*, March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service, March 2018.

Table

Table 1Laboratory Analytical Results - Soil116 Elderberry Drive (Formerly 411 Elderberry Drive)Laurel Bay Military Housing AreaMarine Corps Air Station BeaufortBeaufort, South Carolina

Constituent	SCDHEC RBSLs ⁽¹⁾	Results Sample Collected 05/10/12				
Volatile Organic Compounds Analyzed	/olatile Organic Compounds Analyzed by EPA Method 8260B (mg/kg)					
Benzene	0.003	ND				
Ethylbenzene	1.15	ND				
Naphthalene	0.036	ND				
Toluene	0.627	ND				
Xylenes, Total	13.01	ND				
Semivolatile Organic Compounds Anal	yzed by EPA Method 8270D (mg/kg)					
Benzo(a)anthracene	0.66	ND				
Benzo(b)fluoranthene	0.66	ND				
Benzo(k)fluoranthene	0.66	ND				
Chrysene	0.66	ND				
Dibenz(a,h)anthracene	0.66	ND				

Notes:

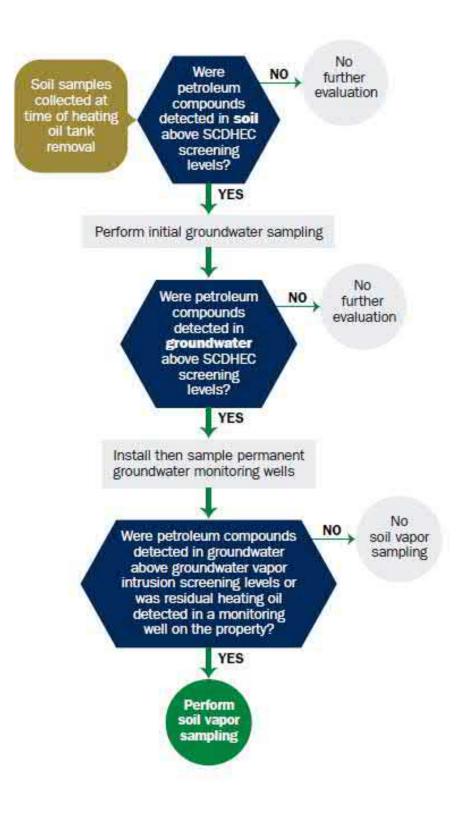
⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 2.0 (SCDHEC, April 2013).

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligram per kilogram


ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The laboratory report is provided in Appendix B.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

Appendix A Multi-Media Selection Process for LBMH

Appendix A - Multi-Media Selection Process for LBMH

Appendix B UST Assessment Report

Attachment 1

South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

Date Receiv	ed	
	State Use Only	

I.

Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

OWNERSHIP OF UST (S)

	ort, Command			REAO (Craig	Ehde)			
Owner Name (Corporation, Individual, Public Agency, Other)								
P.O. Box Mailing Addres								
Beaufort,		South Car	rolina	29904-500	01.			
City		State		Zip Code				
843	843 228-7317 Craig Ehde							
Area Code		Telephone N	umber		Contact Person			

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. # Laurel Bay Milita	ry Housing Area,	Marine Corps	Air Station,	Beaufort, SC
Facility Name or Company	Site Identifier			
411 Elderberry D. Street Address or State Ro	rive, Laurel Bay M ad (as applicable)	Military Hous	ing Area	
Beaufort,	Beaufort			
City	County			
				alarent 2

Attachment 2

11

Insurance Statement

The petroleum release reported to DHEC on ______ at Permit ID Number _____ may qualify to receive state monies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up fund, written confirmation of the existence or non-existence of an environmental insurance policy is required. This section must be completed.

Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? YES____ NO____ (check one)

If you answered **YES** to the above question, please complete the following information:

My policy provider is: ______ The policy deductible is: ______ The policy limit is: ______

If you have this type of insurance, please include a copy of the policy with this report.

IV. REQUEST FOR SUPERB FUNDING

I DO / DO NOT wish to participate in the SUPERB Program. (Circle one.)

V. CERTIFICATION (To be signed by the UST owner)

I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

Name (Type or print.)

Signature

To be completed by Notary Public:

Sworn before me this _____ day of _____, 20____

(Name)

Notary Public for the state of ______. Please affix State seal if you are commissioned outside South Carolina

VI. UST INFORMATION

		Elderberry
A.	Product(ex. Gas, Kerosene)	Heating oil
B.	Capacity(ex. 1k, 2k)	280 gal
C.	Age	Late 1950s
D.	Construction Material(ex. Steel, FRP)	Steel
E٠	Month/Year of Last Use	Mid 1980s
F.	Depth (ft.) To Base of Tank	6'4"
G.	Spill Prevention Equipment Y/N	No
H·	Overfill Prevention Equipment Y/N	No
I.	Method of Closure Removed/Filled	Removed
J _.	Date Tanks Removed/Filled	5/10/2012
K.	Visible Corrosion or Pitting Y/N	Yes
L.	Visible Holes Y/N	Yes

411

M. Method of disposal for any USTs removed from the ground (attach disposal manifests) UST 411Elderberry was removed from the ground and disposed at a Subtitle "D" landfill. See Attachment "A".

N. Method of disposal for any liquid petroleum, sludges, or wastewaters removed from the USTs (attach disposal manifests) UST 411Elderberry had been previously filled with sand by others.

O. If any corrosion, pitting, or holes were observed, describe the location and extent for each UST Corrosion, pitting and holes were found throughout the tank.

VII. PIPING INFORMATION

		411 Elderberry
		Steel
A.	Construction Material(ex. Steel, FRP)	& Copper
B.	Distance from UST to Dispenser	N/A
C.	Number of Dispensers	N/A
D.	Type of System Pressure or Suction	Suction
E.	Was Piping Removed from the Ground? Y/N	No
F.	Visible Corrosion or Pitting Y/N	Yes
G.	Visible Holes Y/N	No
H.	Age	Late 1950s
I.	If any corrosion, pitting, or holes were observed, de	scribe the location and extent for each piping run.

Corrosion and pitting were found on the surface of the steel vent pipe. Copper supply and return lines were sound.

VIII. BRIEF SITE DESCRIPTION AND HISTORY

The USTs at the residences are constructed of single wall steel and formerly contained fuel oil for heating. These USTs were installed in the late 1950s and last used in the mid 1980s.

IX. SITE CONDITION	S
--------------------	---

	Yes	No	Unk
 A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells? If yes, indicate depth and location on the site map. 		х	
B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells?		x	
If yes, indicate location on site map and describe the odor (strong, mild, etc.)			
C. Was water present in the UST excavation, soil borings, or trenches?		х	
If yes, how far below land surface (indicate location and depth)?			
D. Did contaminated soils remain stockpiled on site after closure? If yes, indicate the stockpile location on the site map.		Х	
Name of DHEC representative authorizing soil removal:			
E. Was a petroleum sheen or free product detected on any excavation or boring waters?		х	
If yes, indicate location and thickness.			

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 84009

B.

Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA #
411 Elderb'y	Excav at fill end	Soil	Sandy	6'4"	5/10/12 1115 hrs	P. Shaw	
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

* = Depth Below the Surrounding Land Surface

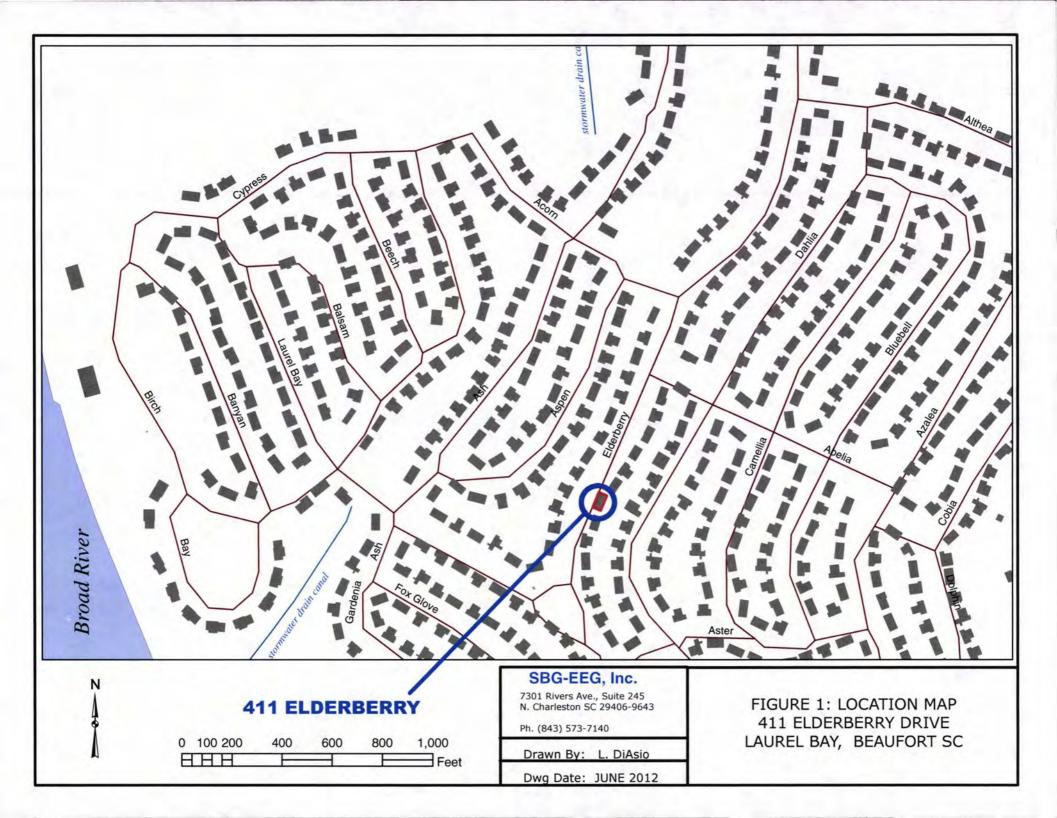
XI. SAMPLING METHODOLOGY

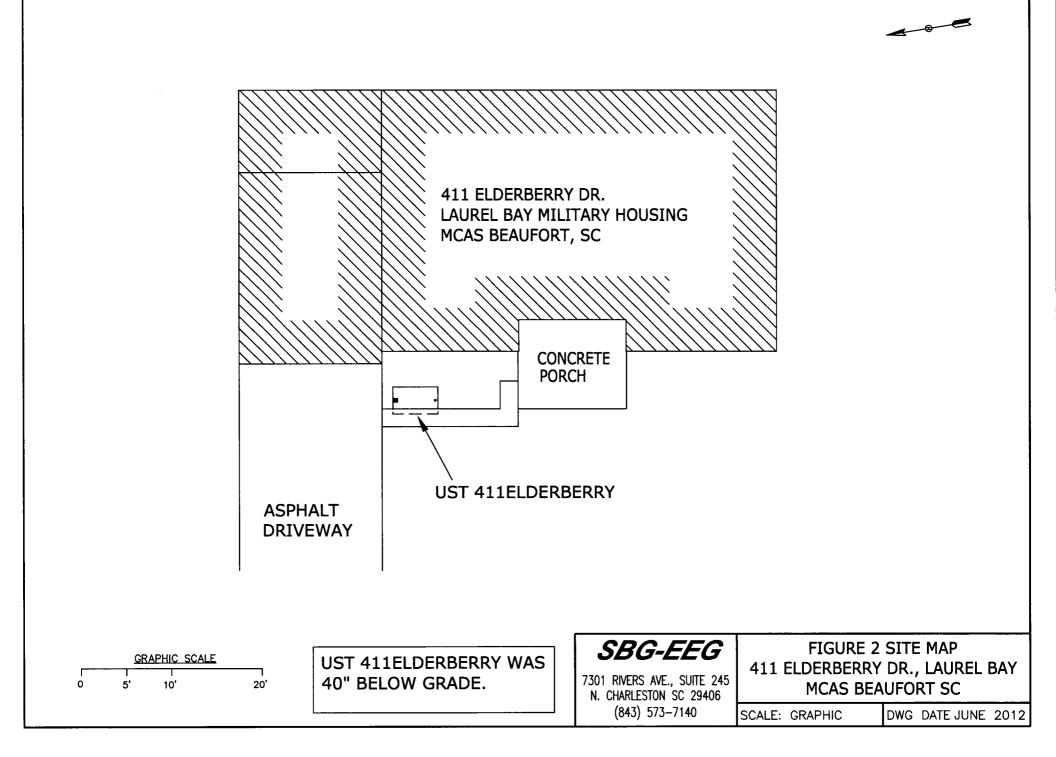
Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

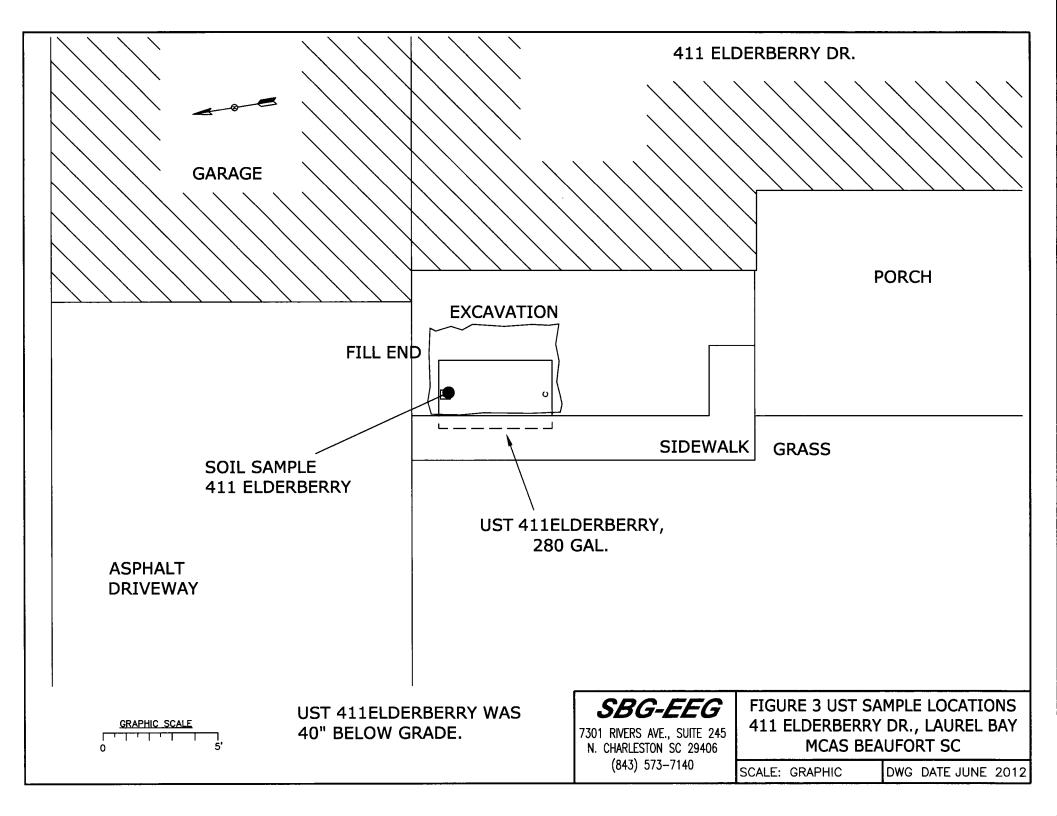
Sampling was performed in accordance with SC DHEC R.61-92 Part 280 and SC DHEC Assessment Guidelines. Sample containers were prepared by the testing laboratory. The grab method was utilized to fill the sample containers leaving as little head space as possible and immediately capped. Soil samples were extracted from area below tank. The samples were marked, logged, and immediately placed in a sample cooler packed with ice to maintain an approximate temperature of 4 degrees Centigrade. Tools were thoroughly cleaned and decontaminated with the seven step decon process after each use. The samples remained in custody of SBG-EEG, Inc. until they were transferred to Test America Incorporated for analysis as documented in the Chain of Custody Record.

XII. RECEPTORS

		Yes	No
А.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?		Х
	If yes, indicate type of receptor, distance, and direction on site map.		
В.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		X
	If yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		X
	If yes, indicate type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the contamination? *Sewer, water, electr cable & fiber optic	*X icity	
	If yes, indicate the type of utility, distance, and direction on the site map.		
E.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		х
	If yes, indicate the area of contaminated soil on the site map.		


,


XIII. SITE MAP


-

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

Picture 1: Location of UST 411Elderberry.

Picture 2: UST 411Elderberry excavation.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

				<u></u>	<u> </u>	
CoC UST	411Elderber	СУ	 			
Benzene	ND	-	 			
Toluene	ND					
Ethylbenzene	ND					
Xylenes	ND					
Naphthalene	ND					
Benzo (a) anthracene	ND					
Benzo (b) fluoranthene	ND					
Benzo (k) fluoranthene	ND					
Chrysene	ND					
Dibenz (a, h) anthracene	ND					
ТРН (ЕРА 3550)						
······································			 			
CoC						
Benzene						
Toluene						
Ethylbenzene						
Xylenes						
Naphthalene						
Benzo (a) anthracene						
Benzo (b) fluoranthene						
Benzo (k) fluoranthene						
Chrysene						
Dibenz (a, h) anthracene						
ТРН (ЕРА 3550)						

SUMMARY OF ANALYSIS RESULTS (cont'd) Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL (µg/l)	W-1	W-2	W -3	W -4
Free Product Thickness	None				
Benzene	5				
Toluene	1,000				
Ethylbenzene	700				
Xylenes	10,000				
Total BTEX	N/A				
МТВЕ	40				
Naphthalene	25				
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10				
Chrysene	10				
Dibenz (a, h) anthracene	10				
EDB	.05				
1,2-DCA	5				
Lead	Site specific				

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Road Nashville, TN 37204 Tel: 800-765-0980

TestAmerica Job ID: NWE1590

Client Project/Site: [none] Client Project Description: Laurel Bay Housing Project

For:

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.testamericainc.com

Visit us at:

Expert

EEG - Small Business Group, Inc. (2449) 10179 Highway 78 Ladson, SC 29456

Attn: Tom McElwee

Em fa Hay

Authorized for release by: 5/29/2012 9:29:40 AM

Ken A. Hayes Senior Project Manager ken.hayes@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	4
Client Sample Results	5
QC Sample Results	9
QC Association	15
Chronicle	17
Method Summary	18
Certification Summary	19
Chain of Custody	20

Sample Summary

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
NWE1590-01	1192 Bobwhite	Soil	05/07/12 15:30	05/12/12 08:10
NWE1590-02	857 Dolphin	Soil	05/09/12 14:45	05/12/12 08:10
NWE1590-03	411 Elderberney	Soil	05/10/12 11:15	05/12/12 08:10

Definitions/Glossary

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

Qualifiers

GCMS Volatiles

Qualifier	Qualifier Description	
Z2	Surrogate recovery was above the acceptance limits. Data not impacted.	
ZX	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.	
RL1	Reporting limit raised due to sample matrix effects.	

GCMS Semivolatiles

Qualifier	Qualifier Description
MNR	No results were reported for the MS/MSD. The sample used for the MS/MSD required dilution due to the sample matrix. Because of this,
	the spike compounds were diluted below the detection limit.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
ZX	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
\$	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client Sample Results

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

TestAmerica Job ID: NWE1590

	Bobwhite						Lab Jailly	le ID: NWE1	
ate Collected: 05/07/12 15:3									rix: So
ate Received: 05/12/12 08:1	0							Percent Soli	ds: 84.
Method: SW846 8260B - Vol	latile Organic Comp	ounds by E	PA Method 82	60B - RE1	1				
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		0.00244	0.00134	mg/kg dry	*	05/07/12 15:30	05/17/12 14:25	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4	144	ZX	70 - 130				05/07/12 15:30	05/17/12 14:25	1.0
Dibromofluoromethane	135	ZX	70 - 130				05/07/12 15:30	05/17/12 14:25	1.0
Toluene-d8	179	ZX	70 - 130				05/07/12 15:30	05/17/12 14:25	1.0
4-Bromofluorobenzene	430	zx	70 - 130				05/07/12 15:30	05/17/12 14:25	1.0
Method: SW846 8260B - Vol	latile Organic Comp	ounde by F	PA Mothod 82	GOR DE					
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Ethylbenzene	1.08	quanner	0.122	0.0668	mg/kg dry	Q	05/07/12 15:30	05/17/12 14:56	50
Toluene	ND	RL1	0.122	0.0668		0	05/07/12 15:30	05/17/12 14:56	50
Xylenes, total	4.30	1121	0.304		mg/kg dry	ø	05/07/12 15:30	05/17/12 14:56	50
Ayleries, total	4.50		0.004	0.102	ing/kg dry		00/07/12 10:00	00/11/12 14:00	00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
1,2-Dichloroethane-d4	79		70 - 130				05/07/12 15:30	05/17/12 14:56	50
Dibromofluoromethane	85		70 - 130				05/07/12 15:30	05/17/12 14:56	50
Toluene-d8	132	ZX	70 - 130				05/07/12 15:30	05/17/12 14:56	50
4-Bromofluorobenzene	123		70 - 130				05/07/12 15:30	05/17/12 14:56	50
Method: SW846 8260B - Vol	latile Organic Comp	ounds by E	PA Method 82	60B - RE3	3				
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	25.3		3.04	1.52	mg/kg dry	\$	05/07/12 15:30	05/18/12 15:11	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4	105		70 - 130				05/07/12 15:30	05/18/12 15:11	5
Dibromofluoromethane	100		70 - 130				05/07/12 15:30	05/18/12 15:11	5
	100 111		70 - 130 70 - 130				05/07/12 15:30 05/07/12 15:30	05/18/12 15:11 05/18/12 15:11	
Toluene-d8									5
Toluene-d8 4-Bromofluorobenzene	111 93	rbons by El	70 - 130 70 - 130	1			05/07/12 15:30	05/18/12 15:11	5
Toluene-d8 4-Bromofluorobenzene Method: SW846 8270D - Pol	111 93 Iyaromatic Hydroca	rbons by El Qualifier	70 - 130 70 - 130	1 MDL	Unit	D	05/07/12 15:30	05/18/12 15:11	5
Toluene-d8 4-Bromofluorobenzene Method: SW846 8270D - Pol Analyte	111 93 Iyaromatic Hydroca		70 - 130 70 - 130 PA 8270D - RE	MDL	Unit mg/kg dry	D	05/07/12 15:30 05/07/12 15:30	05/18/12 15:11 05/18/12 15:11	5 5 Dil F
Toluene-d8 4-Bromofluorobenzene Method: SW846 8270D - Pol Analyte Acenaphthene	111 93 Iyaromatic Hydroca Result	Qualifier	70 - 130 70 - 130 PA 8270D - RE RL	MDL 1.60	2.21		05/07/12 15:30 05/07/12 15:30 Prepared	05/18/12 15:11 05/18/12 15:11 Analyzed	5 5 Dil F 20
Toluene-d8 4-Bromofluorobenzene Method: SW846 8270D - Pol Analyte Acenaphthene Acenaphthylene	111 93 Iyaromatic Hydroca Result 4.93	Qualifier J	70 - 130 70 - 130 PA 8270D - RE RL 3.15	MDL 1.60 1.60	mg/kg dry	\$	05/07/12 15:30 05/07/12 15:30 Prepared 05/17/12 11:09	05/18/12 15:11 05/18/12 15:11 Analyzed 05/18/12 15:08	5 5 Dil F 20 20
Toluene-d8 4-Bromofluorobenzene Method: SW846 8270D - Pol Analyte Acenaphthene Acenaphthylene Anthracene	111 93 Iyaromatic Hydroca Result 4.93 2.46	Qualifier J J	70 - 130 70 - 130 PA 8270D - RE RL 3.15 3.15	MDL 1.60 1.60 1.60	mg/kg dry mg/kg dry	\$	05/07/12 15:30 05/07/12 15:30 Prepared 05/17/12 11:09 05/17/12 11:09	05/18/12 15:11 05/18/12 15:11 Analyzed 05/18/12 15:08 05/18/12 15:08	5 5 Dil F 20 20 20 20
Toluene-d8 4-Bromofluorobenzene Method: SW846 8270D - Pol Analyte Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene	111 93 Iyaromatic Hydroca Result 4.93 2.46 1.85	Qualifier J J	70 - 130 70 - 130 PA 8270D - RE RL 3.15 3.15 3.15	MDL 1.60 1.60 1.60 1.60	mg/kg dry mg/kg dry mg/kg dry	¢ ¢	05/07/12 15:30 05/07/12 15:30 Prepared 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09	05/18/12 15:11 05/18/12 15:11 Analyzed 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08	55 55 Dil F 20 20 20 20 20
Toluene-d8 4-Bromofluorobenzene Method: SW846 8270D - Pol Analyte Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (a) pyrene	111 93 Iyaromatic Hydroca Result 4.93 2.46 1.85 1.74	Qualifier J J	70 - 130 70 - 130 PA 8270D - RE RL 3.15 3.15 3.15 3.15 3.15	MDL 1.60 1.60 1.60 1.60 1.60	mg/kg dry mg/kg dry mg/kg dry mg/kg dry		05/07/12 15:30 05/07/12 15:30 Prepared 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09	05/18/12 15:11 05/18/12 15:11 Analyzed 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08	55 55 Dil F 20 20 20 20 20 20 20
Foluene-d8 II-Bromofluorobenzene Method: SW846 8270D - Pol Analyte Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene	111 93 Iyaromatic Hydroca Result 4.93 2.46 1.85 1.74 ND	Qualifier J J	70 - 130 70 - 130 PA 8270D - RE 3.15 3.15 3.15 3.15 3.15 3.15	MDL 1.60 1.60 1.60 1.60 1.60 1.60	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0 0 0 0 0 0	05/07/12 15:30 05/07/12 15:30 Prepared 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09	05/18/12 15:11 05/18/12 15:11 Analyzed 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08	5 5 Dil F 20 20 20 20 20 20 20 20
Toluene-d8 4-Bromofluorobenzene Method: SW846 8270D - Pol Analyte Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene	111 93 Iyaromatic Hydroca Result 4.93 2.46 1.85 1.74 ND ND	Qualifier J J	70 - 130 70 - 130 PA 8270D - RE 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15	MDL 1.60 1.60 1.60 1.60 1.60 1.60	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0 0 0 0 0	05/07/12 15:30 05/07/12 15:30 Prepared 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09	05/18/12 15:11 05/18/12 15:11 Analyzed 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08	5 5 Dil F 20 20 20 20 20 20 20 20 20 20 20 20 20
Foluene-d8 d-Bromofluorobenzene Method: SW846 8270D - Pol Analyte Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene	111 93 Iyaromatic Hydroca Result 4.93 2.46 1.85 1.74 ND ND ND	Qualifier J J	70 - 130 70 - 130 PA 8270D - RE 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15	MDL 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	* * * * * * *	05/07/12 15:30 05/07/12 15:30 Prepared 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09	05/18/12 15:11 05/18/12 15:11 Analyzed 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08	5 5 Dil F 20 20 20 20 20 20 20 20 20 20 20 20 20
Toluene-d8 4-Bromofluorobenzene Method: SW846 8270D - Pol Analyte Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene	111 93 Iyaromatic Hydroca Result 4.93 2.46 1.85 1.74 ND ND ND ND	Qualifier J J	70 - 130 70 - 130 PA 8270D - RE 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15	MDL 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	05/07/12 15:30 05/07/12 15:30 Prepared 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09	05/18/12 15:11 05/18/12 15:11 Analyzed 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08	5 5 Dil F 20 20 20 20 20 20 20 20 20 20 20 20 20
Toluene-d8 4-Bromofluorobenzene Method: SW846 8270D - Pol Analyte Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene	111 93 Iyaromatic Hydroca Result 4.93 2.46 1.85 1.74 ND ND ND ND	Qualifier J J	70 - 130 70 - 130 PA 8270D - RE 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15	MDL 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		05/07/12 15:30 05/07/12 15:30 Prepared 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09	05/18/12 15:11 05/18/12 15:11 Analyzed 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08	55 55 Dil F 200 200 200 200 200 200 200 200 200 20
Toluene-d8 4-Bromofluorobenzene Method: SW846 8270D - Pol Analyte Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene	111 93 Iyaromatic Hydroca Result 4.93 2.46 1.85 1.74 ND ND ND ND ND ND	Qualifier J J	70 - 130 70 - 130 PA 8270D - RE 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15	MDL 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		05/07/12 15:30 05/07/12 15:30 Prepared 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09	05/18/12 15:11 05/18/12 15:11 Analyzed 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08	5 5 5 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
Toluene-d8 4-Bromofluorobenzene Method: SW846 8270D - Pol Analyte Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Eluoranthene Fluorene	111 93 Iyaromatic Hydroca Result 4.93 2.46 1.85 1.74 ND ND ND ND	Qualifier J J	70 - 130 70 - 130 PA 8270D - RE 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15	MDL 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	05/07/12 15:30 05/07/12 15:30 Prepared 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09	05/18/12 15:11 05/18/12 15:11 Analyzed 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08	5 5 5 0il F 20 20 20 20 20 20 20 20 20 20 20 20 20
Toluene-d8 4-Bromofluorobenzene Method: SW846 8270D - Pol Analyte Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluorene Fluorene Indeno (1,2,3-cd) pyrene	111 93 Iyaromatic Hydroca Result 4.93 2.46 1.85 1.74 ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier J J	70 - 130 70 - 130 PA 8270D - RE 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15	MDL 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	mg/kg dry mg/kg dry	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	05/07/12 15:30 05/07/12 15:30 Prepared 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09	05/18/12 15:11 05/18/12 15:11 05/18/12 15:01 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08	55 55 20 20 20 20 20 20 20 20 20 20 20 20 20
Toluene-d8 4-Bromofluorobenzene Method: SW846 8270D - Pol Analyte Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene ndeno (1,2,3-cd) pyrene Naphthalene	111 93 Iyaromatic Hydroca Result 4.93 2.46 1.85 1.74 ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier J J	70 - 130 70 - 130 PA 8270D - RE 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15	MDL 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	mg/kg dry mg/kg dry	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	05/07/12 15:30 05/07/12 15:30 Prepared 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09 05/17/12 11:09	05/18/12 15:11 05/18/12 15:11 05/18/12 15:01 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08 05/18/12 15:08	55 55 200 200 200 200 200 200 200 200 20
Toluene-d8 4-Bromofluorobenzene Method: SW846 8270D - Pol Analyte Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene	111 93 Iyaromatic Hydroca Result 4.93 2.46 1.85 1.74 ND ND ND ND ND ND ND S.18 13.3 ND 24.0 22.1	Qualifier J J	70 - 130 70 - 130 PA 8270D - RE 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15	MDL 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	mg/kg dry mg/kg dry	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	05/07/12 15:30 05/07/12 15:30 Prepared 05/17/12 11:09 05/17/12 11:09	05/18/12 15:11 05/18/12 15:11 05/18/12 15:11 05/18/12 15:08 05/18/12 15:08	50 50 20 20 20 20 20 20 20 20 20 20 20 20 20
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene Method: SW846 8270D - Pol Analyte Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene 1-Methylnaphthalene	111 93 Iyaromatic Hydroca Result 4.93 2.46 1.85 1.74 ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier J J	70 - 130 70 - 130 PA 8270D - RE 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15	MDL 1.60	mg/kg dry mg/kg dry	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	05/07/12 15:30 05/07/12 15:30 Prepared 05/17/12 11:09 05/17/12 11:09	05/18/12 15:11 05/18/12 15:11 05/18/12 15:01 05/18/12 15:08 05/18/12 15:08	50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20

Client Sample Results

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none] TestAmerica Job ID: NWE1590

Client Sample ID: 1192 Bobwhite							Lab Sample ID: NWE1590-01			
Date Collected: 05/07/12 1	5:30							Mat	rix: Soil	
Date Received: 05/12/12 08:10							Percent Soli	ds: 84.1		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Terphenyl-d14	121	ZX	18 - 120				05/17/12 11:09	05/18/12 15:08	20.0	
2-Fluorobiphenyl	97		14 - 120				05/17/12 11:09	05/18/12 15:08	20.0	
Nitrobenzene-d5	134	zx	17 - 120				05/17/12 11:09	05/18/12 15:08	20.0	
Method: SW-846 - Genera	I Chemistry Paramete	ers								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
% Dry Solids	84.1		0.500	0.500	%		05/14/12 15:39	05/15/12 07:13	1.00	

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

Lab Sample ID: NWE1590-02 Matrix: Soil

Percent Solids: 76.6

Date Collected: 05/09/12 14:45	
Date Received: 05/12/12 08:10	

% Dry Solids

Client Sample ID: 857 Dolphin

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00624	0.00343	mg/kg dry	\$	05/09/12 14:45	05/17/12 13:24	1.00
Ethylbenzene	ND		0.00624	0.00343	mg/kg dry	٥	05/09/12 14:45	05/17/12 13:24	1.00
Naphthalene	ND		0.0156	0.00781	mg/kg dry	\$	05/09/12 14:45	05/17/12 13:24	1.00
Toluene	ND		0.00624	0.00343	mg/kg dry	\$	05/09/12 14:45	05/17/12 13:24	1.00
Xylenes, total	ND		0.0156	0.00781	mg/kg dry	\$	05/09/12 14:45	05/17/12 13:24	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	105		70 - 130				05/09/12 14:45	05/17/12 13:24	1.00
Dibromofluoromethane	100		70 - 130				05/09/12 14:45	05/17/12 13:24	1.00
Toluene-d8	115		70 - 130				05/09/12 14:45	05/17/12 13:24	1.00
4-Bromofluorobenzene	118		70 - 130				05/09/12 14:45	05/17/12 13:24	1.00

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0871	0.0442	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:34	1.00
Acenaphthylene	ND		0.0871	0.0442	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:34	1.00
Anthracene	ND		0.0871	0.0442	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:34	1.00
Benzo (a) anthracene	ND		0.0871	0.0442	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:34	1.00
Benzo (a) pyrene	ND		0.0871	0.0442	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:34	1.00
Benzo (b) fluoranthene	ND		0.0871	0.0442	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:34	1.00
Benzo (g,h,i) perylene	ND		0.0871	0.0442	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:34	1.00
Benzo (k) fluoranthene	ND		0.0871	0.0442	mg/kg dry	亞	05/17/12 11:09	05/18/12 00:34	1.00
Chrysene	ND		0.0871	0.0442	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:34	1.00
Dibenz (a,h) anthracene	ND		0.0871	0.0442	mg/kg dry	菜	05/17/12 11:09	05/18/12 00:34	1.00
Fluoranthene	ND		0.0871	0.0442	mg/kg dry	森	05/17/12 11:09	05/18/12 00:34	1.00
Fluorene	ND		0.0871	0.0442	mg/kg dry	袋	05/17/12 11:09	05/18/12 00:34	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0871	0.0442	mg/kg dry	\$2	05/17/12 11:09	05/18/12 00:34	1.00
Naphthalene	ND		0.0871	0.0442	mg/kg dry	\Diamond	05/17/12 11:09	05/18/12 00:34	1.00
Phenanthrene	ND		0.0871	0.0442	mg/kg dry	**	05/17/12 11:09	05/18/12 00:34	1.00
Pyrene	ND		0.0871	0.0442	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:34	1.00
1-Methylnaphthalene	ND		0.0871	0.0442	mg/kg dry	¢	05/17/12 11:09	05/18/12 00:34	1.00
2-Methylnaphthalene	ND		0.0871	0.0442	mg/kg dry	۵	05/17/12 11:09	05/18/12 00:34	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	86		18 - 120				05/17/12 11:09	05/18/12 00:34	1.00
2-Fluorobiphenyl	65		14 - 120				05/17/12 11:09	05/18/12 00:34	1.00
Nitrobenzene-d5	60		17 - 120				05/17/12 11:09	05/18/12 00:34	1.00
Method: SW-846 - General Chem	istry Paramete	ers							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

05/15/12 07:13

1.00

0.500

76.6

0.500 %

05/14/12 15:39

TestAmerica Job ID: NWE1590

Matrix: Soil Percent Solids: 93

ľ

Lab Sample ID: NWE1590-03

Clie	nt Sample ID: 411 Elder	rberney	
Date	Collected: 05/10/12 11:15		
Date	Received: 05/12/12 08:10		

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00241	0.00133	mg/kg dry	ø	05/10/12 11:15	05/17/12 13:55	1.00
Ethylbenzene	ND		0.00241	0.00133	mg/kg dry	\$	05/10/12 11:15	05/17/12 13:55	1.00
Naphthalene	ND		0.00603	0.00301	mg/kg dry	\$	05/10/12 11:15	05/17/12 13:55	1.00
Toluene	ND		0.00241	0.00133	mg/kg dry	\$	05/10/12 11:15	05/17/12 13:55	1.00
Xylenes, total	ND		0.00603	0.00301	mg/kg dry	\$	05/10/12 11:15	05/17/12 13:55	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	106		70 - 130				05/10/12 11:15	05/17/12 13:55	1.00
Dibromofluoromethane	102		70 - 130				05/10/12 11:15	05/17/12 13:55	1.00
Toluene-d8	120		70 - 130				05/10/12 11:15	05/17/12 13:55	1.00
4-Bromofluorobenzene	117		70 - 130				05/10/12 11:15	05/17/12 13:55	1.00

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0712	0.0361	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:56	1.00
Acenaphthylene	ND		0.0712	0.0361	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:56	1.00
Anthracene	ND		0.0712	0.0361	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:56	1.00
Benzo (a) anthracene	ND		0.0712	0.0361	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:56	1.00
Benzo (a) pyrene	ND		0.0712	0.0361	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:56	1.00
Benzo (b) fluoranthene	ND		0.0712	0.0361	mg/kg dry	ø	05/17/12 11:09	05/18/12 00:56	1.00
Benzo (g,h,i) perylene	ND		0.0712	0.0361	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:56	1.00
Benzo (k) fluoranthene	ND		0.0712	0.0361	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:56	1.00
Chrysene	ND		0.0712	0.0361	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:56	1.00
Dibenz (a,h) anthracene	ND		0.0712	0.0361	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:56	1.00
Fluoranthene	ND		0.0712	0.0361	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:56	1.00
Fluorene	ND		0.0712	0.0361	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:56	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0712	0.0361	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:56	1.00
Naphthalene	ND		0.0712	0.0361	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:56	1.00
Phenanthrene	ND		0.0712	0.0361	mg/kg dry	*	05/17/12 11:09	05/18/12 00:56	1.00
Pyrene	ND		0.0712	0.0361	mg/kg dry	¢	05/17/12 11:09	05/18/12 00:56	1.00
1-Methylnaphthalene	ND		0.0712	0.0361	mg/kg dry	¢	05/17/12 11:09	05/18/12 00:56	1.00
2-Methylnaphthalene	ND		0.0712	0.0361	mg/kg dry	\$	05/17/12 11:09	05/18/12 00:56	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	87		18 - 120				05/17/12 11:09	05/18/12 00:56	1.00
2-Fluorobiphenyl	65		14 - 120				05/17/12 11:09	05/18/12 00:56	1.00
Nitrobenzene-d5	63		17 - 120				05/17/12 11:09	05/18/12 00:56	1.00
Method: SW-846 - General C	hemistry Paramete	ars							
Analyte		Qualifier	PI	MDI	Unit	D	Prenared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
% Dry Solids	93.0		0.500	0.500	%		05/14/12 15:39	05/15/12 07:13	1.00

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B

106

114

Lab Sample ID: 12E3877-BLK1 Matrix: Soil

Client Sample ID: Method Blank
Prep Type: Total
Prep Batch: 12E3877 P

05/17/12 12:23

05/17/12 12:23

Client Sample ID: Method Blank

Prep Type: Total Prep Batch: 12E3877_P

1.00

1.00

05/17/12 00:28

05/17/12 00:28

Analysis Batch: V008288

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.00110	mg/kg wet		05/17/12 00:28	05/17/12 12:23	1.00
Ethylbenzene	ND		0.00200	0.00110	mg/kg wet		05/17/12 00:28	05/17/12 12:23	1.00
Naphthalene	ND		0.00500	0.00250	mg/kg wet		05/17/12 00:28	05/17/12 12:23	1.00
Toluene	ND		0.00200	0.00110	mg/kg wet		05/17/12 00:28	05/17/12 12:23	1.00
Xylenes, total	ND		0.00500	0.00250	mg/kg wet		05/17/12 00:28	05/17/12 12:23	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	111		70 - 130				05/17/12 00:28	05/17/12 12:23	1.00
Dibromofluoromethane	103		70 - 130				05/17/12 00:28	05/17/12 12:23	1.00

70 - 130

70 - 130

Lab Sample ID: 12E3877-BLK2 Matrix: Soil Analysis Batch: V008288

Toluene-d8

4-Bromofluorobenzene

Blank	Blank							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.100	0.0550	mg/kg wet		05/17/12 00:28	05/17/12 12:54	50.0
ND		0.100	0.0550	mg/kg wet		05/17/12 00:28	05/17/12 12:54	50.0
ND		0.250	0.125	mg/kg wet		05/17/12 00:28	05/17/12 12:54	50.0
ND		0.100	0.0550	mg/kg wet		05/17/12 00:28	05/17/12 12:54	50.0
ND		0.250	0.125	mg/kg wet		05/17/12 00:28	05/17/12 12:54	50.0
	Result ND ND ND ND	ND ND ND	Result Qualifier RL ND 0.100 ND 0.100 ND 0.250 ND 0.100	Result Qualifier RL MDL ND 0.100 0.0550 ND 0.100 0.0550 ND 0.250 0.125 ND 0.100 0.0550	Result Qualifier RL MDL Unit ND 0.100 0.0550 mg/kg wet ND 0.100 0.0550 mg/kg wet ND 0.250 0.125 mg/kg wet ND 0.100 0.0550 mg/kg wet ND 0.250 0.125 mg/kg wet	Result Qualifier RL MDL Unit P ND 0.100 0.0550 mg/kg wet P ND 0.100 0.0550 mg/kg wet P ND 0.250 0.125 mg/kg wet ND 0.100 0.0550 mg/kg wet ND 0.100 0.0550 mg/kg wet	Result Qualifier RL MDL Unit D Prepared ND 0.100 0.0550 mg/kg wet 05/17/12 00:28 ND 0.100 0.0550 mg/kg wet 05/17/12 00:28 ND 0.250 0.125 mg/kg wet 05/17/12 00:28 ND 0.250 0.125 mg/kg wet 05/17/12 00:28 ND 0.100 0.0550 mg/kg wet 05/17/12 00:28	Result Qualifier RL MDL Unit P Prepared Analyzed ND 0.100 0.0550 mg/kg wet 05/17/12 00:28 05/17/12 12:54 ND 0.100 0.0550 mg/kg wet 05/17/12 00:28 05/17/12 12:54 ND 0.250 0.125 mg/kg wet 05/17/12 00:28 05/17/12 12:54 ND 0.100 0.0550 mg/kg wet 05/17/12 00:28 05/17/12 12:54 ND 0.100 0.0550 mg/kg wet 05/17/12 00:28 05/17/12 12:54

	Blank	Blank				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	110		70 - 130	05/17/12 00:28	05/17/12 12:54	50.0
Dibromofluoromethane	102		70 - 130	05/17/12 00:28	05/17/12 12:54	50.0
Toluene-d8	114		70 - 130	05/17/12 00:28	05/17/12 12:54	50.0
4-Bromofluorobenzene	113		70 - 130	05/17/12 00:28	05/17/12 12:54	50.0

Lab Sample ID: 12E3877-BS1 Matrix: Soil

Analy	ysis	Batch:	V008288
-------	------	--------	---------

and the second se	Spike	LCS	LCS				%Rec.	-
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	49.6		ug/kg		99	75 - 127	
Ethylbenzene	50.0	49.9		ug/kg		100	80 - 134	
Naphthalene	50.0	40.7		ug/kg		81	69 - 150	
Toluene	50.0	53.2		ug/kg		106	80 - 132	
Xylenes, total	150	140		ug/kg		93	80 - 137	

very Qualifier	Limits
108	70 - 130
104	70 - 130
113	70 - 130
100	70 - 130
	108 104 113

Client Sample ID: Lab Control Sample

Prep Type: Total Prep Batch: 12E3877_P

Client Sample ID: Matrix Spike

Prep Type: Total

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 12E3877-BSD1 Matrix: Soil				Clie	nt Sam	ple ID: I	Lab Contro Pre	I Sample p Type:	
Analysis Batch: V008288							Prep Batch: 12E		
	Spike	LCS Dup	LCS Dup				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	48.3		ug/kg		97	75 - 127	3	50
Ethylbenzene	50.0	47.7		ug/kg		95	80 - 134	4	50
Naphthalene	50.0	43.6		ug/kg		87	69 - 150	7	50
Toluene	50.0	57.9		ug/kg		116	80 - 132	8	50
Xylenes, total	150	134		ug/kg		89	80 - 137	4	50

	LCS Dup	LCS Dup	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	108		70 - 130
Dibromofluoromethane	103		70 - 130
Toluene-d8	131	Z2	70 - 130
4-Bromofluorobenzene	101		70 - 130

Lab Sample ID: 12E3877-MS1 Matrix: Soil Analysis Batch: V008288

Analysis Batch: V008288	Sample	Sample	Spike	Matrix Spike	Matrix Spi	ke			Prep Batch: 12E3877_P %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	ND		0.0504	0.0502		mg/kg dry	\$	100	31 - 143
Ethylbenzene	ND		0.0504	0.0485		mg/kg dry	\$	96	23 - 161
Naphthalene	ND		0.0504	0.0201		mg/kg dry	\$	40	10 - 176
Toluene	ND		0.0504	0.0514		mg/kg dry	\$	102	30 - 155
Xylenes, total	ND		0.151	0.130		mg/kg dry	\$	86	25 - 162

	Matrix Spike	Matrix Spike	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	111		70 - 130
Dibromofluoromethane	103		70 - 130
Toluene-d8	110		70 - 130
4-Bromofluorobenzene	98		70 - 130

Lab Sample ID: 12E3877-MSD1 Matrix: Soil Analysis Batch: V008288

Analysis Batch: V008288									Prep Batc	h: 12E3	877_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spi	ke Duj			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		0.0536	0.0536		mg/kg dry	Ø	100	31 - 143	6	50
Ethylbenzene	ND		0.0536	0.0522		mg/kg dry	-	97	23 - 161	7	50
Naphthalene	ND		0.0536	0.0222		mg/kg dry	\$	41	10 - 176	10	50
Toluene	ND		0.0536	0.0539		mg/kg dry	\$	101	30 - 155	5	50
Xylenes, total	ND		0.161	0.136		mg/kg dry	\$	85	25 - 162	5	50

	Matrix Spike Dup	Matrix Spike	Dup
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	108		70 - 130
Dibromofluoromethane	102		70 - 130
Toluene-d8	95		70 - 130
4-Bromofluorobenzene	100		70 - 130

Client Sample ID: Matrix Spike Duplicate Prep Type: Total Prop Batch: 12E3877_P

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 12E4742-BLK1 Matrix: Soil							Client Sa	mple ID: Metho Prep Typ	
Analysis Batch: V008450	Blank	Blank					-	Prep Batch: 12E	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.00110	mg/kg wet		05/18/12 10:04	05/18/12 13:39	1.00
Ethylbenzene	ND		0.00200	0.00110	mg/kg wet		05/18/12 10:04	05/18/12 13:39	1.00
Naphthalene	ND		0.00500	0.00250	mg/kg wet		05/18/12 10:04	05/18/12 13:39	1.00
Toluene	ND		0.00200	0.00110	mg/kg wet		05/18/12 10:04	05/18/12 13:39	1.00
Xylenes, total	ND		0.00500	0.00250	mg/kg wet		05/18/12 10:04	05/18/12 13:39	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	100		70 - 130				05/18/12 10:04	05/18/12 13:39	1.00
Dibromofluoromethane	101		70 - 130				05/18/12 10:04	05/18/12 13:39	1.00
Toluene-d8	120		70 - 130				05/18/12 10:04	05/18/12 13:39	1.00
4-Bromofluorobenzene	112		70 - 130				05/18/12 10:04	05/18/12 13:39	1.00

Lab Sample ID: 12E4742-BLK2 Matrix: Soil Analysis Batch: V008450

Analysis Batch: V008450							F	Prep Batch: 12E	4742_P
	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.100	0.0550	mg/kg wet		05/18/12 10:04	05/18/12 14:10	50.0
Ethylbenzene	ND		0.100	0.0550	mg/kg wet		05/18/12 10:04	05/18/12 14:10	50.0
Naphthalene	ND		0.250	0.125	mg/kg wet		05/18/12 10:04	05/18/12 14:10	50.0
Toluene	ND		0.100	0.0550	mg/kg wet		05/18/12 10:04	05/18/12 14:10	50.0
Xylenes, total	ND		0.250	0.125	mg/kg wet		05/18/12 10:04	05/18/12 14:10	50.0

	Blank	Blank				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	97		70 - 130	05/18/12 10:04	05/18/12 14:10	50.0
Dibromofluoromethane	99		70 - 130	05/18/12 10:04	05/18/12 14:10	50.0
Toluene-d8	113		70 - 130	05/18/12 10:04	05/18/12 14:10	50.0
4-Bromofluorobenzene	111		70 - 130	05/18/12 10:04	05/18/12 14:10	50.0

Lab Sample ID: 12E4742-BS1 Matrix: Soil

Analysis Batch: V008450

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
50.0	46.9		ug/kg		94	75 - 127	
50.0	44.8		ug/kg		90	80 - 134	
50.0	38.6		ug/kg		77	69 - 150	
50.0	47.5		ug/kg		95	80 - 132	
150	127		ug/kg		84	80 - 137	
	Added 50.0 50.0 50.0 50.0 50.0	Added Result 50.0 46.9 50.0 44.8 50.0 38.6 50.0 47.5	Added Result Qualifier 50.0 46.9	Added Result Qualifier Unit 50.0 46.9 ug/kg 50.0 44.8 ug/kg 50.0 38.6 ug/kg 50.0 47.5 ug/kg	Added Result Qualifier Unit D 50.0 46.9 ug/kg 50.0 44.8 ug/kg 50.0 38.6 ug/kg 50.0 47.5 ug/kg	Added Result Qualifier Unit D %Rec 50.0 46.9 ug/kg 94 50.0 44.8 ug/kg 90 50.0 38.6 ug/kg 77 50.0 47.5 ug/kg 95	Added Result Qualifier Unit D %Rec Limits 50.0 46.9 ug/kg 94 75 - 127 50.0 44.8 ug/kg 90 80 - 134 50.0 38.6 ug/kg 77 69 - 150 50.0 47.5 ug/kg 95 80 - 132

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	106		70 - 130
Dibromofluoromethane	103		70 - 130
Toluene-d8	107		70 - 130
4-Bromofluorobenzene	101		70 - 130

Client Sample ID: Lab Control Sample Prep Type: Total

Client Sample ID: Method Blank

Prep Type: Total

Prep Batch: 12E4742_P

TestAn	nerica	Nashvi
1000		2012
	J/29/	ZUIZ

Client Sample ID: Matrix Spike

Prep Type: Total

Prep Batch: 12E4742 P

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 12E4742-BSD1 Matrix: Soil				Clie	nt San	ple ID:	Lab Contro Pre	I Sampl	
Analysis Batch: V008450							Prep Batc	State of the second	
	Spike	LCS Dup	LCS Dup				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	46.8		ug/kg		94	75 - 127	0.1	50
Ethylbenzene	50.0	44.6		ug/kg		89	80 - 134	0.5	50
Naphthalene	50.0	38.2		ug/kg		76	69 - 150	1	50
Toluene	50.0	45.6		ug/kg		91	80 - 132	4	50
Xylenes, total	150	126		ug/kg		84	80 - 137	0.4	50

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	107		70 - 130
Dibromofluoromethane	105		70 - 130
Toluene-d8	105		70 - 130
4-Bromofluorobenzene	98		70 - 130

Lab Sample ID: 12E4742-MS1 Matrix: Soil Analysis Batch: V008450

Analysis Daten. Votovot	Sample	Sample	Spike	Matrix Spike	Matrix Spil	(e			%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	ND		0.0661	0.0736		mg/kg dry	¢	111	31 - 143
Ethylbenzene	ND		0.0661	0.0678		mg/kg dry	\$	102	23 - 161
Naphthalene	0.00613		0.0661	0.0234		mg/kg dry	Φ	26	10 - 176
Toluene	ND		0.0661	0.0873		mg/kg dry	ø	132	30 - 155
Xylenes, total	0.00250		0.198	0.176		mg/kg dry	¢	88	25 - 162

	Matrix Spike	Matrix Spike	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	103		70 - 130
Dibromofluoromethane	101		70 - 130
Toluene-d8	125		70 - 130
4-Bromofluorobenzene	160	ZX	70 - 130

Lab Sample ID: 12E4742-MSD1 Matrix: Soil

Analysis Batch: V008450									Prep Batc	h: 12E4	742_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spi	ke Duj			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		0.0544	0.0587		mg/kg dry	Q	108	31 - 143	22	50
Ethylbenzene	ND		0.0544	0.0503		mg/kg dry	Ø	93	23 - 161	30	50
Naphthalene	0.00613		0.0544	0.0177		mg/kg dry	֯	21	10 - 176	28	50
Toluene	ND		0.0544	0.0739		mg/kg dry	¢	136	30 - 155	17	50
Xylenes, total	0.00250		0.163	0.129		mg/kg dry	0	77	25 - 162	31	50
	Matrix Spike Dup	Matrix Spike	Dup								

	Matrix Spike Dup	Matrix Spike	Dup
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	104		70 - 130
Dibromofluoromethane	104		70 - 130
Toluene-d8	136	ZX	70 - 130
4-Bromofluorobenzene	155	ZX	70 - 130

Client Sample ID: Matrix Spike Duplicate Prep Type: Total

(e Dut			%Rec.		RPD	
	Unit	D	%Rec	Limits	RPD	Limit	
	mg/kg dry	Q.	108	31 - 143	22	50	
	mg/kg dry	Ø	93	23 - 161	30	50	
	mg/kg dry	֯	21	10 - 176	28	50	
	mg/kg dry	¢	136	30 - 155	17	50	
	mg/kg dry	10	77	25 - 162	31	50	

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D

Lab Sample ID: 12E3033-BLK1 Matrix: Soil

Analysis Batch: 12E3033

Client Sample ID: Method Blank Prep Type: Total Prep Batch: 12E3033_P

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Batch: 12E3033_P

Blan	Blank							
Analyte Resul	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene NE		0.0670	0.0340	mg/kg wet		05/17/12 11:09	05/17/12 23:49	1.00
Acenaphthylene NE		0.0670	0.0340	mg/kg wet		05/17/12 11:09	05/17/12 23:49	1.00
Anthracene NE	1	0.0670	0.0340	mg/kg wet		05/17/12 11:09	05/17/12 23:49	1.00
Benzo (a) anthracene NE		0.0670	0.0340	mg/kg wet		05/17/12 11:09	05/17/12 23:49	1.00
Benzo (a) pyrene NE)	0.0670	0.0340	mg/kg wet		05/17/12 11:09	05/17/12 23:49	1.00
Benzo (b) fluoranthene NE)	0.0670	0.0340	mg/kg wet		05/17/12 11:09	05/17/12 23:49	1.00
Benzo (g,h,i) perylene NE)	0.0670	0.0340	mg/kg wet		05/17/12 11:09	05/17/12 23:49	1.00
Benzo (k) fluoranthene NE)	0.0670	0.0340	mg/kg wet		05/17/12 11:09	05/17/12 23:49	1.00
Chrysene NE)	0.0670	0.0340	mg/kg wet		05/17/12 11:09	05/17/12 23:49	1.00
Dibenz (a,h) anthracene NE)	0.0670	0.0340	mg/kg wet		05/17/12 11:09	05/17/12 23:49	1.00
Fluoranthene NE)	0.0670	0.0340	mg/kg wet		05/17/12 11:09	05/17/12 23:49	1.00
Fluorene NE)	0.0670	0.0340	mg/kg wet		05/17/12 11:09	05/17/12 23:49	1.00
Indeno (1,2,3-cd) pyrene NE)	0.0670	0.0340	mg/kg wet		05/17/12 11:09	05/17/12 23:49	1.00
Naphthalene NE)	0.0670	0.0340	mg/kg wet		05/17/12 11:09	05/17/12 23:49	1.00
Phenanthrene NE)	0.0670	0.0340	mg/kg wet		05/17/12 11:09	05/17/12 23:49	1.00
Pyrene NE)	0.0670	0.0340	mg/kg wet		05/17/12 11:09	05/17/12 23:49	1.00
1-Methylnaphthalene NE)	0.0670	0.0340	mg/kg wet		05/17/12 11:09	05/17/12 23:49	1.00
2-Methylnaphthalene NE)	0.0670	0.0340	mg/kg wet		05/17/12 11:09	05/17/12 23:49	1.00
Blan	Blank							

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Terphenyl-d14	95		18 - 120	05/17/12 11:09	05/17/12 23:49	1.00
2-Fluorobiphenyl	72		14 - 120	05/17/12 11:09	05/17/12 23:49	1.00
Nitrobenzene-d5	68		17 - 120	05/17/12 11:09	05/17/12 23:49	1.00

Lab Sample ID: 12E3033-BS1 Matrix: Soil Analysis Batch: 12E3033

Spike LCS LCS %Rec. Added **Result Qualifier** Unit D %Rec Limits Analyte 36 - 120 Acenaphthene 1.67 1.54 MNR mg/kg wet 93 38 - 120 1.67 1.49 MNR mg/kg wet 89 Acenaphthylene 1.60 MNR 96 Anthracene 1.67 mg/kg wet 46 - 124 Benzo (a) anthracene 1.67 1.62 MNR mg/kg wet 97 45 - 120 105 45 - 120 Benzo (a) pyrene 1.67 1.75 MNR mg/kg wet 1.69 MNR mg/kg wet 101 42 - 120 Benzo (b) fluoranthene 1.67 98 38 - 120 1.67 1.63 MNR mg/kg wet Benzo (g,h,i) perylene 42 - 120 92 Benzo (k) fluoranthene 1.67 1.54 MNR mg/kg wet 96 43 - 120 1.67 1.59 MNR mg/kg wet Chrysene 95 32 - 128 1.58 MNR Dibenz (a,h) anthracene 1.67 mg/kg wet 1.67 MNR 100 46 - 120 Fluoranthene 1.67 mg/kg wet 95 1.67 1.58 MNR mg/kg wet 42 - 120 Fluorene 1.67 1.69 MNR mg/kg wet 101 41 - 121 Indeno (1,2,3-cd) pyrene 1.40 MNR 84 32 - 120 1.67 mg/kg wet Naphthalene 94 Phenanthrene 1.67 1.57 MNR mg/kg wet 45 - 120 43 - 120 1.67 1.59 MNR mg/kg wet 96 Pyrene 62 32 - 120 1-Methylnaphthalene 1.67 1.03 MNR mg/kg wet 28 - 120 2-Methylnaphthalene 1.67 1.37 MNR mg/kg wet 82

QC Sample Results

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

1

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D (Continued)

Lab Sample ID: 12E3033-BS Matrix: Soil	1		Client Sample ID: Lab Control Sample Prep Type: Total
Analysis Batch: 12E3033			Prep Batch: 12E3033_P
	LCS LCS		
Surrogate	%Recovery Qualifier	Limits	
Terphenyl-d14	93	18 - 120	
2-Fluorobiphenyl	69	14 - 120	
Nitrobenzene-d5	59	17 - 120	

Method: SW-846 - General Chemistry Parameters

Lab Sample ID: 12E3045-DUP1 Matrix: Soil							Client Sample	ID: Dup p Type:	
Analysis Batch: 12E3045	Comolo	Samala	Dunliasta	Dunliante			Prep Batch		
	a construction of the second	Sample	a second and a second	Duplicate					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
% Dry Solids	86.7		86.8		%			0.07	20

QC Association Summary

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

GCMS Volatiles

Analysis Batch: V0082	288				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
12E3877-BLK1	Method Blank	Total	Soil	SW846 8260B	12E3877_
12E3877-BLK2	Method Blank	Total	Soil	SW846 8260B	12E3877_
12E3877-BS1	Lab Control Sample	Total	Soil	SW846 8260B	12E3877_
12E3877-BSD1	Lab Control Sample Dup	Total	Soil	SW846 8260B	12E3877_
12E3877-MS1	Matrix Spike	Total	Soil	SW846 8260B	12E3877_
12E3877-MSD1	Matrix Spike Duplicate	Total	Soil	SW846 8260B	12E3877_
NWE1590-01 - RE1	1192 Bobwhite	Total	Soil	SW846 8260B	12E3877_
NWE1590-01 - RE2	1192 Bobwhite	Total	Soil	SW846 8260B	12E3877
NWE1590-02 - RE1	857 Dolphin	Total	Soil	SW846 8260B	12E3877
NWE1590-03 - RE1	411 Elderberney	Total	Soil	SW846 8260B	12E3877_
Analysis Batch: V0084	450				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
12E4742-BLK1	Method Blank	Total	Soil	SW846 8260B	12E4742_
12E4742-BLK2	Method Blank	Total	Soil	SW846 8260B	12E4742_
12E4742-BS1	Lab Control Sample	Total	Soil	SW846 8260B	12E4742_
12E4742-BSD1	Lab Control Sample Dup	Total	Soil	SW846 8260B	12E4742_
12E4742-MS1	Matrix Spike	Total	Soil	SW846 8260B	12E4742_
12E4742-MSD1	Matrix Spike Duplicate	Total	Soil	SW846 8260B	12E4742_
NWE1590-01 - RE3	1192 Bobwhite	Total	Soil	SW846 8260B	12E4742_
Prep Batch: 12E3877_	P				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bate
12E3877-BLK1	Method Blank	Total	Soil	EPA 5035	
12E3877-BLK2	Method Blank	Total	Soil	EPA 5035	
12E3877-BS1	Lab Control Sample	Total	Soil	EPA 5035	
12E3877-BSD1	Lab Control Sample Dup	Total	Soil	EPA 5035	
12E3877-MS1	Matrix Spike	Total	Soil	EPA 5035	
12E3877-MSD1	Matrix Spike Duplicate	Total	Soil	EPA 5035	
NWE1590-01 - RE1	1192 Bobwhite	Total	Soil	EPA 5035	
NWE1590-01 - RE2	1192 Bobwhite	Total	Soil	EPA 5035	
NWE1590-02 - RE1	857 Dolphin	Total	Soil	EPA 5035	
NWE1590-03 - RE1	411 Elderberney	Total	Soil	EPA 5035	
Prep Batch: 12E4742_	Р				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bat
12E4742-BLK1	Method Blank	Total	Soil	EPA 5035	
12E4742-BLK2	Method Blank	Total	Soil	EPA 5035	
12E4742-BS1	Lab Control Sample	Total	Soil	EPA 5035	
12E4742-BSD1	Lab Control Sample Dup	Total	Soil	EPA 5035	
12E4742-MS1	Matrix Spike	Total	Soil	EPA 5035	
12E4742-MSD1	Matrix Spike Duplicate	Total	Soil	EPA 5035	
NWE1590-01 - RE3	1192 Bobwhite	Total	Soil	EPA 5035	
GCMS Semivolatil	es				
Analysis Batch: 12E30					
-					

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12E3033-BLK1	Method Blank	Total	Soil	SW846 8270D	12E3033_P
12E3033-BS1	Lab Control Sample	Total	Soil	SW846 8270D	12E3033_P
NWE1590-01 - RE1	1192 Bobwhite	Total	Soil	SW846 8270D	12E3033_P
NWE1590-02	857 Dolphin	Total	Soil	SW846 8270D	12E3033_P

QC Association Summary

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

GCMS Semivolatiles (Continued)

Analysis Batch: 12E3033 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
NWE1590-03	411 Elderberney	Total	Soil	SW846 8270D	12E3033_P
Prep Batch: 12E303	3_P				

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12E3033-BLK1	Method Blank	Total	Soil	EPA 3550B	
12E3033-BS1	Lab Control Sample	Total	Soil	EPA 3550B	
NWE1590-01 - RE1	1192 Bobwhite	Total	Soil	EPA 3550B	
NWE1590-02	857 Dolphin	Total	Soil	EPA 3550B	
NWE1590-03	411 Elderberney	Total	Soil	EPA 3550B	

Extractions

Analysis Batch: 12E3045

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12E3045-DUP1	Duplicate	Total	Soil	SW-846	12E3045_P
NWE1590-01	1192 Bobwhite	Total	Soil	SW-846	12E3045_P
NWE1590-02	857 Dolphin	Total	Soil	SW-846	12E3045_P
NWE1590-03	411 Elderberney	Total	Soil	SW-846	12E3045_P
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Dave Datab
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Deve Detab
					Prep Batch
12E3045-DUP1	Duplicate	Total	Soil	% Solids	Prep Batch
12E3045-DUP1 NWE1590-01	Duplicate 1192 Bobwhite	Total Total	Soil Soil	A SECONDER	Prep Batch
1.77777777777777777777777777777	in an an an an an an an			% Solids	Prep Batch

Lab Sample ID: NWE1590-01

Matrix: Soil Percent Solids: 84.1

Client Sample ID: 1192 Bobwhite Date Collected: 05/07/12 15:30 Date Received: 05/12/12 08:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Fotal	Prep	EPA 5035	RE1	1.03	12E3877_P	05/07/12 15:30	TSP	TAL NSH
otal	Analysis	SW846 8260B	RE1	1.00	V008288	05/17/12 14:25	ККК	TAL NSH
Total	Prep	EPA 5035	RE2	1.02	12E3877_P	05/07/12 15:30	TSP	TAL NSH
Total	Analysis	SW846 8260B	RE2	50.0	V008288	05/17/12 14:56	KKK	TAL NSH
otal	Prep	EPA 5035	RE3	1.02	12E4742_P	05/07/12 15:30	TSP	TAL NSH
otal	Analysis	SW846 8260B	RE3	500	V008450	05/18/12 15:11	ККК	TAL NSH
fotal	Prep	EPA 3550B	RE1	1.98	12E3033_P	05/17/12 11:09	JJR	TAL NSH
Total	Analysis	SW846 8270D	RE1	20.0	12E3033	05/18/12 15:08	WLL	TAL NSH
Fotal	Prep	% Solids		1.00	12E3045_P	05/14/12 15:39	RRS	TAL NSH
otal	Analysis	SW-846		1.00	12E3045	05/15/12 07:13	KDJ	TAL NSH

Client Sample ID: 857 Dolphin

Date Collected: 05/09/12 14:45 Date Received: 05/12/12 08:10

Lab Sample ID: NWE1590-02

Lab Sample ID: NWE1590-03

Matrix: Soil Percent Solids: 76.6

Matrix: Soil

Percent Solids: 93

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 5035	RE1	2.39	12E3877_P	05/09/12 14:45	TSP	TAL NSH
Total	Analysis	SW846 8260B	RE1	1.00	V008288	05/17/12 13:24	KKK	TAL NSH
Total	Prep	EPA 3550B		0.996	12E3033_P	05/17/12 11:09	JJR	TAL NSH
Total	Analysis	SW846 8270D		1.00	12E3033	05/18/12 00:34	WLL	TAL NSH
Total	Prep	% Solids		1.00	12E3045_P	05/14/12 15:39	RRS	TAL NSH
Total	Analysis	SW-846		1.00	12E3045	05/15/12 07:13	KDJ	TAL NSH

Client Sample ID: 411 Elderberney

Date Collected: 05/10/12 11:15 Date Received: 05/12/12 08:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 5035	RE1	1.12	12E3877_P	05/10/12 11:15	TSP	TAL NSH
Total	Analysis	SW846 8260B	RE1	1.00	V008288	05/17/12 13:55	ККК	TAL NSH
Total	Prep	EPA 3550B		0.987	12E3033_P	05/17/12 11:09	JJR	TAL NSH
Total	Analysis	SW846 8270D		1.00	12E3033	05/18/12 00:56	WLL	TAL NSH
Total	Prep	% Solids		1.00	12E3045_P	05/14/12 15:39	RRS	TAL NSH
Total	Analysis	SW-846		1.00	12E3045	05/15/12 07:13	KDJ	TAL NSH

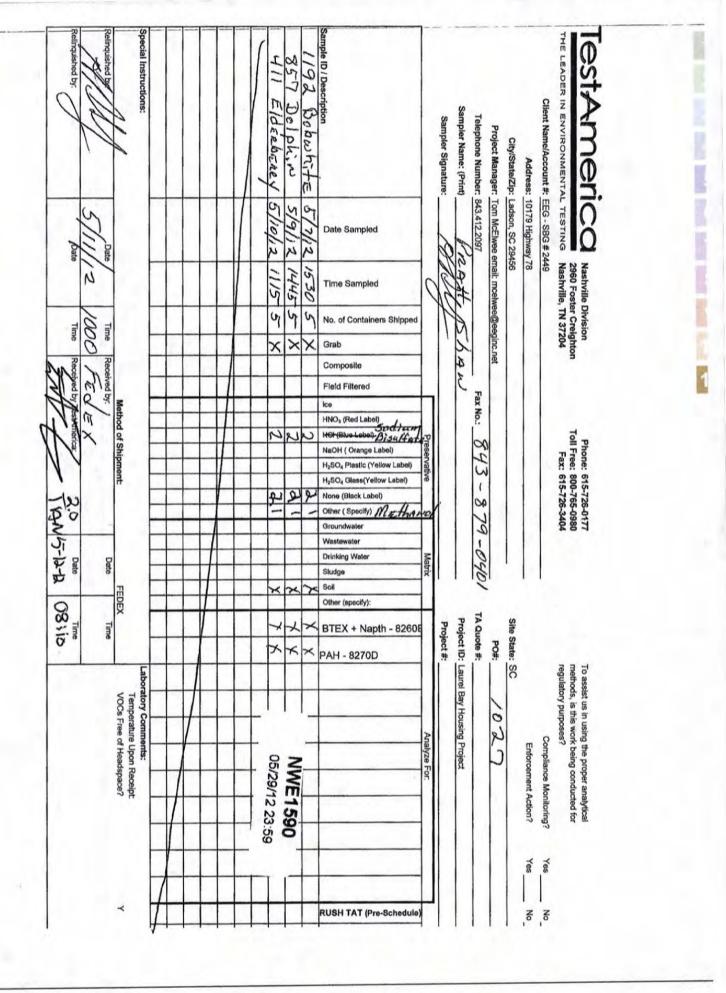
Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Road, Nashville, TN 37204, TEL 800-765-0980

Method	Method Description	Protocol	Laboratory
SW-846	General Chemistry Parameters		TAL NSH
SW846 8260B	Volatile Organic Compounds by EPA Method 8260B		TAL NSH
SW846 8270D	Polyaromatic Hydrocarbons by EPA 8270D		TAL NSH

Protocol References:

Laboratory References:


TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Road, Nashville, TN 37204, TEL 800-765-0980

Certification Summary

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

aboratory	Authority	Program	EPA Region	Certification ID
estAmerica Nashville		ACIL		393
estAmerica Nashville	A2LA	ISO/IEC 17025		0453.07
estAmerica Nashville	Alabama	State Program	4	41150
estAmerica Nashville	Alaska (UST)	State Program	10	UST-087
estAmerica Nashville	Arizona	State Program	9	AZ0473
estAmerica Nashville	Arkansas DEQ	State Program	6	88-0737
estAmerica Nashville	California	NELAC	9	1168CA
estAmerica Nashville	Canadian Assoc Lab Accred (CALA)	Canada		3744
estAmerica Nashville	Colorado	State Program	8	N/A
estAmerica Nashville	Connecticut	State Program	1	PH-0220
estAmerica Nashville	Florida	NELAC	4	E87358
estAmerica Nashville	Illinois	NELAC	5	200010
estAmerica Nashville	Iowa	State Program	7	131
estAmerica Nashville	Kansas	NELAC	7	E-10229
estAmerica Nashville	Kentucky	State Program	4	90038
estAmerica Nashville	Kentucky (UST)	State Program	4	19
estAmerica Nashville	Louisiana	NELAC	6	30613
estAmerica Nashville	Louisiana	NELAC	6	LA110014
estAmerica Nashville	Maryland	State Program	3	316
estAmerica Nashville	Massachusetts	State Program	1	M-TN032
estAmerica Nashville	Minnesota	NELAC	5	047-999-345
estAmerica Nashville	Mississippi	State Program	4	N/A
estAmerica Nashville	Montana (UST)	State Program	8	NA
estAmerica Nashville	New Hampshire	NELAC	1	2963
estAmerica Nashville	New Jersey	NELAC	2	TN965
estAmerica Nashville	New York	NELAC	2	11342
estAmerica Nashville	North Carolina DENR	State Program	4	387
estAmerica Nashville	North Dakota	State Program	8	R-146
estAmerica Nashville	Ohio VAP	State Program	5	CL0033
estAmerica Nashville	Oklahoma	State Program	6	9412
estAmerica Nashville	Oregon	NELAC	10	TN200001
estAmerica Nashville	Pennsylvania	NELAC	3	68-00585
estAmerica Nashville	Rhode Island	State Program	1	LAO00268
estAmerica Nashville	South Carolina	State Program	4	84009
estAmerica Nashville	South Carolina	State Program	4	84009
estAmerica Nashville	Tennessee	State Program	4	2008
estAmerica Nashville	Texas	NELAC	6	T104704077-09-TX
estAmerica Nashville	USDA	Federal		S-48469
estAmerica Nashville	Utah	NELAC	8	TAN
estAmerica Nashville	Virginia	NELAC	3	460152
estAmerica Nashville	Virginia	State Program	3	00323
estAmerica Nashville	Washington	State Program	10	C789
estAmerica Nashville	West Virginia DEP	State Program	3	219
estAmerica Nashville	Wisconsin	State Program	5	998020430
estAmerica Nashville	Wyoming (UST)	A2LA	8	453.07

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

ATTACHMENT A

NON-HAZARDOUS MANIFEST	IS EPA ID No). М	anifest Doc	NO.	2. Page 1	1-5/22-53		
Generator's Mailing Address:	Generator	's Site Address (If o	different than m	ailing):	A. Manife	st Number		
MCAS, BEAUFORT AUREL BAY HOUSING					W	MNA	00316	Constraint and the second second
BEAUFORT, SC 29907					1.2.4	B. State	Generator's	ID
Generator's Phone 843-228-6461				Tie -				
. Transporter 1 Company Name	6.	US EPA I	D Number		201		and the	
EG, INC.					. I manner	ransporter's I orter's Phone	an or contraction of the	79-0411
. Transporter 2 Company Name	8.	US EPA I	D Number		D. mansp	orter's Phone	043-0	75-0411
			Contenend			ransporter's II	D	Table parts
Designated Facility Name and Site Address	10.	() () () () () () () () () ()	ID Number	-	F. Transp	orter's Phone	No. Contraction of	100
IICKORY HILL LANDFILL	10.	US EPA	ID Number		G. State F	acility ID		
621 LOW COUNTRY ROAD						acility Phone	843-9	87-4643
RIDGELAND, SC 29936			THE AL	Activity		To All State	1	
1. Description of Waste Materials			C. C	intainers	13 Total	14. Unit	I.M	isc. Comments
. HEATING OIL TANKS FILLED WITH SAND		AT THE OWNER	Nó.	Туре	Quantity	Wt./Vol.	1.54	
			-		1 22	Case Case C		Quality.
WM Profile # 10265550	C		1 Starting		1 Section		march	
			1			ton the	13.5	
WM Profile #			And a series	23150	The second second	199	ale in	
WW.FIGHE#	and the second		AC AC	1.000000				
			1. 1. 1.			and the second	19123	
WM Profile #	and the second		1125-00	1244	3. 2223	S. Aller		
			A start		Series and a	1	1.1815	
WM Profile #			-ordition	100	and they have	Contraction of the	- Alleria	
Additional Descriptions for Materials Listed Above		1 - Carlos - Carlos	K. Dispos	al Locatio	n			
			Call	-			Laval	
			Cell Grid		1.0		Level	SP TES
5. Special Handling Instructions and Additional Inform	ation	011.	1,4)411	EldER	bERR	16)10	2021
UST'S + 120 m 2 2	200	DI	re A	ILIN	ac.	bERES		Cardi
1) 1359 CARdiNAL'3)	85 1	Dolphin	NTACT (DU	DNE NO	TLAR	dinal	<u> </u>	-
5. GENERATOR'S CERTIFICATE:		EMERGENCY CO	NTACT / PH	UNE NU.:			1	in the
nereby certify that the above-described materials are r	not hazardo	us wastes as defir	ed by CFR P	art 261 or	any applicable	e state law, ha	ive been ful	ly and
curately described, classified and packaged and are in				rding to a	oplicable regu	lations.	1	P
rinted Name	5	gnature "On beha		The			Month	Day
7. Transporter 1 Acknowledgement of Receipt of Mate	SPERIFICAT.		101	/				No.
Printed Name PRAA Shaw	Si	gnature	NY	1			Month	Day
8. Transporter 2 Acknowledgement of Receipt of Mate	erials		1		-		1/1	11 1/
Printed Name	area and	gnature		Ser			Month	Day
James BALdus,N	C	James	Bal.	A			7	+6 1
9. Certificate of Final Treatment/Disposal	in the second	A	S. S. Lin		A. 9. 3	115	4 's 1	
certify, on behalf of the above listed treatment facility,	that to the	best of my knowl	edge, the at	ove-descr	ibed waste w	as managed in	compliance	e with all
oplicable laws, regulations, permits and licenses on the D. Facility Owner or Operator: Certification of receipt	A Martin Constants - Taking - Canto	A second second second second second second	overed by th	nis manife	it.			
Printed Name	1	gnature			1 1 1		Month	Day
		- Contraction	Con l				pring .	15

Appendix C Regulatory Correspondence

Catherine B. Templeton, Director *Propriating and protecting the health of the public and the environment*

May 15, 2014

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: No Further Action Laurel Bay Underground Storage Tank Assessment Reports for: See attached sheet

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received the above referenced Underground Storage Tanks (USTs) Assessment Reports for the addresses listed above. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

The Department has reviewed the referenced assessment reports and agrees there is no indication of soil or groundwater contamination on these properties, and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at kriegkm@dhec.sc.gov or 803-898-0255.

Sincerely,

20m. The

Kent Krieg Department of Defense Corrective Action Section Bureau of Land and Waste Management South Carolina Department of Health and Environmental Control

Cc: Russell Berry (via email) Craig Ehde (via email)

Catherine B. Templeton, Director Promosting and protecting the health of the public and the environment

Attachment to: Krieg to Drawdy Subject: NFA Dated 5/15/2014

Laurel Bay Underground Storage Tank Assessment Reports for: (143 addresses/146 tanks)

212 Balsam	503 Laurel Bay
219 Balsam	508 Laurel Bay
260 Beech Tank 1	510 Laurel Bay
260 Beech Tank 2	523 Laurel Bay
267 Birch	525 Laurel Bay
287 Birch	529 Laurel Bay
302 Ash	533 Laurel Bay
305 Ash	537 Laurel Bay
334 Ash	556 Dahlia
338 Ash Tank 1	557 Dahlia
338 Ash Tank 2	559 Dahlia
361 Aspen	562 Dahlia
371 Aspen	568 Dahlia
372 Aspen Tank 1	581 Aster
372 Aspen Tank 2	582 Aster
375 Aspen	584 Aster
385 Aspen	602 Dahlia
403 Elderberry	607 Dahlia
407 Elderberry	614 Dahlia
411 Elderberry	616 Dahlia
414 Elderberry	619 Dahlia
415 Elderberry	625 Dahlia
421 Elderberry	629 Dahlia
427 Elderberry	631 Dahlia
428 Elderberry	634 Dahlia
431 Elderberry	660 Camellia
455 Elderberry	661 Camellia
484 Laurel Bay	666 Camellia
490 Laurel Bay	669 Camellia
502 Laurel Bay	672 Camellia

Laurel Bay Underground Storage Tank Assessment Reports for: (143 addresses/146 tanks) cont.

677 Camellia 890 Cobia 679 Camellia 892 Cobia 686 Camellia 900 Barracuda 690 Camellia 906 Barracuda 692 Abelia 911 Barracuda 700 Bluebell 912 Barracuda 704 Bluebell 917 Barracuda 705 Bluebell 918 Barracuda 705 Bluebell 928 Albacore 710 Bluebell 1024 Foxglove 711 Bluebell 1028 Foxglove 714 Bluebell 1029 Foxglove 715 Bluebell 1038 Iris 726 Bluebell 1049 Gardenia 728 Bluebell 1079 Heather 7315 Bluebell 1079 Heather 7318 Bluebell 1079 Heather 7318 Bluebell 1173 Bobwhite 734 Bluebell 1122 Iris 735 Althea 1230 Cardinal 738 Laurel Bay 1221 Cardinal 807 Azalea 1248 Dove 814 Azalea 1242 Dove 814 Azalea 1262 Dove 820 Azalea 1262 Dove 831 Azalea 1262 Dove	674 Camellia	880 Cobia
679 Camellia 892 Cobia 686 Camellia 900 Barracuda 690 Abelia 901 Barracuda 698 Abelia 911 Barracuda 700 Bluebell 912 Barracuda 704 Bluebell 917 Barracuda 705 Bluebell 919 Barracuda 708 Bluebell 919 Barracuda 708 Bluebell 928 Albacore 710 Bluebell 1024 Foxglove 711 Bluebell 1028 Foxglove 714 Bluebell 1028 Foxglove 715 Bluebell 1038 Iris 726 Bluebell 1038 Iris 726 Bluebell 1079 Heather 731 Bluebell 1122 Iris 734 Bluebell 1122 Iris 734 Bluebell 1122 Iris 734 Althea 1136 Iris 734 Althea 1238 Dove 814 Azalea 1242 Dove 815 Azalea 1242 Dove 815 Azalea 1242 Dove 818 Azalea 1262 Dove 821 Azalea 1262 Dove 821 Azalea 1262 Dove 832 Azalea		
686 Camellia 900 Barracuda 690 Camellia 906 Barracuda 698 Abelia 911 Barracuda 700 Bluebell 912 Barracuda 704 Bluebell 917 Barracuda 705 Bluebell 919 Barracuda 705 Bluebell 928 Albacore 710 Bluebell 1024 Foxglove 711 Bluebell 1028 Foxglove 714 Bluebell 1029 Foxglove 715 Bluebell 1038 Iris 726 Bluebell 1038 Iris 726 Bluebell 1038 Iris 726 Bluebell 1079 Heather 731 Bluebell 1079 Heather 731 Bluebell 1103 Iris 734 Bluebell 1120 Iris 735 Althea 1136 Iris 734 Bluebell 1122 Iris 735 Althea 1200 Cardinal 778 Laurel Bay 1221 Cardinal 807 Azalea 1242 Dove 814 Azalea 1242 Dove 815 Azalea 1242 Dove 813 Azalea 1267 Dove 821 Azalea 1267 Dove 831 Azal		
690 Camellia 906 Barracuda 698 Abelia 911 Barracuda 700 Bluebell 912 Barracuda 704 Bluebell 917 Barracuda 705 Bluebell 919 Barracuda 708 Bluebell 928 Albacore 710 Bluebell 1024 Foxglove 711 Bluebell 1028 Foxglove 714 Bluebell 1029 Foxglove 714 Bluebell 1029 Foxglove 715 Bluebell 1028 Foxglove 714 Bluebell 1029 Foxglove 715 Bluebell 1029 Foxglove 715 Bluebell 1038 Iris 726 Bluebell 1049 Gardenia 728 Bluebell 1079 Heather 731 Bluebell 1103 Iris 734 Bluebell 1122 Iris 759 Althea 1136 Iris 761 Althea 1173 Bobwhite 773 Althea 1200 Cardinal 778 Laurel Bay 1221 Cardinal 807 Azalea 1242 Dove 814 Azalea 1242 Dove 815 Azalea 1262 Dove 821 Azalea 1262 Dove		
698 Abelia911 Barracuda700 Bluebell912 Barracuda704 Bluebell917 Barracuda705 Bluebell919 Barracuda708 Bluebell928 Albacore710 Bluebell1024 Foxglove711 Bluebell1028 Foxglove714 Bluebell1029 Foxglove715 Bluebell1038 Iris726 Bluebell1049 Gardenia727 Bluebell1079 Heather731 Bluebell1103 Iris734 Bluebell1122 Iris734 Bluebell1123 Iris734 Bluebell1124 Iris734 Bluebell1221 Cardinal737 Althea1230 Cardinal738 Laurel Bay1221 Cardinal807 Azalea1242 Dove814 Azalea1242 Dove818 Azalea1262 Dove820 Azalea1265 Dove831 Azalea1265 Dove832 Azalea1298 Eagle835 Azalea1300 Eagle835 Azalea1300 Eagle845 Azalea1304 Eagle855 Dolphin1315 Albatross874 Cobia1320 Albatross		
700 Bluebell912 Barracuda704 Bluebell917 Barracuda705 Bluebell919 Barracuda708 Bluebell928 Albacore710 Bluebell1024 Foxglove711 Bluebell1028 Foxglove714 Bluebell1029 Foxglove714 Bluebell1029 Foxglove715 Bluebell1038 Iris726 Bluebell1049 Gardenia728 Bluebell1079 Heather731 Bluebell1103 Iris734 Bluebell1122 Iris759 Althea1136 Iris761 Althea1173 Bobwhite773 Althea1200 Cardinal774 Alaea1221 Cardinal807 Azalea1242 Dove814 Azalea1242 Dove814 Azalea1262 Dove821 Azalea1262 Dove831 Azalea1267 Dove832 Azalea1288 Eagle835 Azalea1300 Eagle835 Azalea1303 Eagle835 Azalea1304 Eagle835 Dolphin1315 Albatross849 Cobia1316 Albatross874 Cobia1320 Albatross		
704 Bluebell 917 Barracuda 705 Bluebell 919 Barracuda 708 Bluebell 928 Albacore 710 Bluebell 1024 Foxglove 711 Bluebell 1028 Foxglove 714 Bluebell 1028 Foxglove 714 Bluebell 1028 Foxglove 715 Bluebell 1038 Iris 726 Bluebell 1038 Iris 726 Bluebell 1049 Gardenia 728 Bluebell 1079 Heather 731 Bluebell 1103 Iris 734 Bluebell 1103 Iris 734 Bluebell 1122 Iris 734 Bluebell 1122 Iris 734 Bluebell 1122 Iris 759 Althea 1136 Iris 761 Althea 1173 Bobwhite 773 Althea 1200 Cardinal 778 Laurel Bay 1221 Cardinal 807 Azalea 1242 Dove 814 Azalea 1242 Dove 818 Azalea 1262 Dove 820 Azalea 1265 Dove 821 Azalea 1265 Dove 831 Azalea 1298 Eagle 834 Azalea 1298 Eagle 834 Azalea 1298 Eagle		
705 Bluebell919 Barracuda708 Bluebell928 Albacore710 Bluebell1024 Foxglove711 Bluebell1028 Foxglove714 Bluebell1029 Foxglove715 Bluebell1038 Iris726 Bluebell1049 Gardenia728 Bluebell1079 Heather731 Bluebell1103 Iris734 Bluebell1103 Iris734 Bluebell1103 Iris734 Bluebell1122 Iris759 Althea1136 Iris761 Althea1173 Bobwhite773 Althea1200 Cardinal778 Alazela1238 Dove814 Azalea1241 Dove815 Azalea1242 Dove818 Azalea1265 Dove821 Azalea1265 Dove831 Azalea1267 Dove832 Azalea1288 Eagle834 Azalea1298 Eagle834 Azalea1300 Eagle835 Dolphin1304 Eagle853 Dolphin1316 Albatross869 Cobia1320 Albatross874 Cobia1320 Albatross		
708 Bluebell 928 Albacore 710 Bluebell 1024 Foxglove 711 Bluebell 1028 Foxglove 714 Bluebell 1029 Foxglove 715 Bluebell 1038 Iris 726 Bluebell 1049 Gardenia 728 Bluebell 1049 Gardenia 728 Bluebell 1079 Heather 731 Bluebell 1103 Iris 734 Bluebell 1122 Iris 759 Althea 1200 Cardinal 778 Laurel Bay 1221 Cardinal 807 Azalea 1241 Dove 814 Azalea 1242 Dove 818 Azalea 1242 Dove 820 Azalea 1262 Dove 821 Azalea 1267 Dove 831 Azalea 1267 Dove 832 Azalea 1298 Eagle 834 Azalea 1298 Eagle 835 Azalea 1300 Eagle 835 Azalea		
710 Bluebell 1024 Foxglove 711 Bluebell 1028 Foxglove 714 Bluebell 1029 Foxglove 715 Bluebell 1038 Iris 726 Bluebell 1049 Gardenia 728 Bluebell 1079 Heather 731 Bluebell 1103 Iris 734 Bluebell 1103 Iris 734 Bluebell 1103 Iris 734 Bluebell 1122 Iris 759 Althea 1136 Iris 761 Althea 1173 Bobwhite 773 Althea 1200 Cardinal 778 Laurel Bay 1221 Cardinal 807 Azalea 1238 Dove 814 Azalea 1241 Dove 815 Azalea 1242 Dove 818 Azalea 1262 Dove 820 Azalea 1262 Dove 831 Azalea 1267 Dove 832 Azalea 1298 Eagle 834 Azalea 1300 Eagle 835 Azalea 1300 Eagle 835 Azalea 1303 Eagle 835 Azalea 1303 Eagle 835 Azalea 1303 Eagle 835 Azalea 1303 Eagle 835 Azalea 1304 Eagle		
711 Bluebell 1028 Foxglove 714 Bluebell 1029 Foxglove 715 Bluebell 1038 Iris 726 Bluebell 1049 Gardenia 728 Bluebell 1079 Heather 731 Bluebell 1103 Iris 734 Bluebell 1103 Iris 734 Bluebell 1122 Iris 735 Althea 1136 Iris 761 Althea 1173 Bobwhite 773 Althea 1200 Cardinal 778 Laurel Bay 1221 Cardinal 807 Azalea 1238 Dove 814 Azalea 1241 Dove 815 Azalea 1242 Dove 818 Azalea 1262 Dove 820 Azalea 1265 Dove 831 Azalea 1289 Eagle 834 Azalea 1298 Eagle 835 Azalea 1300 Eagle 853 Dolphin 1315 Albatross		
714 Bluebell 1029 Foxglove 715 Bluebell 1038 Iris 726 Bluebell 1049 Gardenia 728 Bluebell 1079 Heather 731 Bluebell 1103 Iris 734 Bluebell 1103 Iris 734 Bluebell 1122 Iris 759 Althea 1136 Iris 761 Althea 1173 Bobwhite 773 Althea 1200 Cardinal 778 Laurel Bay 1221 Cardinal 807 Azalea 1242 Dove 814 Azalea 1242 Dove 818 Azalea 1242 Dove 820 Azalea 1262 Dove 821 Azalea 1265 Dove 831 Azalea 1267 Dove 832 Azalea 1298 Eagle 834 Azalea 1300 Eagle 834 Azalea 1300 Eagle 835 Azalea 1300 Eagle 835 Azalea 1300 Eagle 835 Azalea 1304 Eagle 835 Dolphin 1315 Albatross 858 Dolphin 1316 Albatross 869 Cobia 13120 Albatross		
715 Bluebell 1038 Iris 726 Bluebell 1049 Gardenia 728 Bluebell 1079 Heather 731 Bluebell 1103 Iris 734 Bluebell 1122 Iris 734 Bluebell 1122 Iris 759 Althea 1136 Iris 761 Althea 1173 Bobwhite 773 Althea 1200 Cardinal 778 Laurel Bay 1221 Cardinal 807 Azalea 1238 Dove 814 Azalea 1241 Dove 815 Azalea 1242 Dove 818 Azalea 1242 Dove 820 Azalea 1265 Dove 831 Azalea 1267 Dove 832 Azalea 1289 Eagle 833 Azalea 1298 Eagle 834 Azalea 1209 Eagle 835 Azalea 1300 Eagle 834 Azalea 1300 Eagle 835 Azalea 1303 Eagle 835 Dolphin 1304 Eagle 836 Dolphin 1316 Albatross 836 Ocbia 1316 Albatross 837 4 Cobia 1320 Albatross		
726 Bluebell 1049 Gardenia 728 Bluebell 1079 Heather 731 Bluebell 1103 Iris 734 Bluebell 1122 Iris 759 Althea 1136 Iris 761 Althea 1173 Bobwhite 773 Althea 1200 Cardinal 778 Laurel Bay 1221 Cardinal 807 Azalea 1238 Dove 814 Azalea 1241 Dove 815 Azalea 1242 Dove 818 Azalea 1262 Dove 820 Azalea 1265 Dove 831 Azalea 1267 Dove 833 Azalea 1298 Eagle 834 Azalea 1298 Eagle 835 Azalea 1300 Eagle 835 Azalea 1300 Eagle 841 Azalea 1303 Eagle 835 Azalea 1304 Eagle 835 Azalea 1304 Eagle 835 Dolphin 1315 Albatross 840 Eagle 1316 Albatross 840 Eagle 1316 Albatross		1029 Foxglove
728 Bluebell 1079 Heather 731 Bluebell 1103 Iris 734 Bluebell 1122 Iris 759 Althea 1136 Iris 761 Althea 1173 Bobwhite 773 Althea 1200 Cardinal 778 Laurel Bay 1221 Cardinal 807 Azalea 1238 Dove 814 Azalea 1241 Dove 815 Azalea 1242 Dove 818 Azalea 1242 Dove 820 Azalea 1262 Dove 821 Azalea 1265 Dove 831 Azalea 1267 Dove 832 Azalea 1298 Eagle 834 Azalea 1300 Eagle 835 Azalea 1300 Eagle 835 Azalea 1300 Eagle 841 Azalea 1300 Eagle 835 Azalea 1300 Eagle 835 Azalea 1300 Eagle 835 Azalea 1303 Eagle 858 Dolphin 1315 Albatross 858 Dolphin 1316 Albatross 859 Cobia 13120 Albatross	715 Bluebell	1038 Iris
731 Bluebell1103 Iris734 Bluebell1122 Iris759 Althea1136 Iris761 Althea1173 Bobwhite773 Althea1200 Cardinal773 Althea1200 Cardinal778 Laurel Bay1221 Cardinal807 Azalea1238 Dove814 Azalea1241 Dove815 Azalea1242 Dove818 Azalea1262 Dove820 Azalea1265 Dove831 Azalea1267 Dove832 Azalea1289 Eagle834 Azalea1300 Eagle835 Azalea1300 Eagle841 Azalea1303 Eagle853 Dolphin1315 Albatross859 Cobia1316 Albatross874 Cobia1320 Albatross	726 Bluebell	1049 Gardenia
734 Bluebell1122 Iris759 Althea1136 Iris761 Althea1173 Bobwhite773 Althea1200 Cardinal773 Althea1200 Cardinal778 Laurel Bay1221 Cardinal807 Azalea1238 Dove814 Azalea1241 Dove815 Azalea1242 Dove818 Azalea1248 Dove820 Azalea1265 Dove831 Azalea1267 Dove831 Azalea1289 Eagle834 Azalea1298 Eagle835 Azalea1300 Eagle841 Azalea1303 Eagle853 Dolphin1315 Albatross859 Cobia1316 Albatross874 Cobia1320 Albatross	728 Bluebell	1079 Heather
759 Althea 1136 Iris 761 Althea 1173 Bobwhite 773 Althea 1200 Cardinal 773 Althea 1200 Cardinal 778 Laurel Bay 1221 Cardinal 807 Azalea 1238 Dove 814 Azalea 1241 Dove 815 Azalea 1242 Dove 818 Azalea 1242 Dove 820 Azalea 1262 Dove 821 Azalea 1265 Dove 831 Azalea 1267 Dove 832 Azalea 1298 Eagle 834 Azalea 1300 Eagle 834 Azalea 1300 Eagle 835 Azalea 1300 Eagle 836 Dolphin 1315 Albatross 869 Cobia 1316 Albatross 874 Cobia 1320 Albatross	731 Bluebell	1103 Iris
761 Althea1173 Bobwhite773 Althea1200 Cardinal778 Laurel Bay1221 Cardinal807 Azalea1238 Dove814 Azalea1241 Dove815 Azalea1242 Dove818 Azalea1242 Dove818 Azalea1242 Dove818 Azalea1262 Dove820 Azalea1265 Dove831 Azalea1267 Dove832 Azalea1289 Eagle834 Azalea1298 Eagle835 Azalea1300 Eagle841 Azalea1303 Eagle853 Dolphin1315 Albatross869 Cobia1320 Albatross874 Cobia1320 Albatross	734 Bluebell	1122 Iris
773 Althea1200 Cardinal778 Laurel Bay1221 Cardinal807 Azalea1238 Dove814 Azalea1241 Dove815 Azalea1242 Dove818 Azalea1242 Dove820 Azalea1262 Dove821 Azalea1265 Dove831 Azalea1267 Dove832 Azalea1289 Eagle834 Azalea1300 Eagle835 Azalea1300 Eagle841 Azalea1303 Eagle853 Dolphin1314 Albatross869 Cobia1316 Albatross874 Cobia1320 Albatross	759 Althea	1136 Iris
778 Laurel Bay 1221 Cardinal 807 Azalea 1238 Dove 814 Azalea 1241 Dove 815 Azalea 1242 Dove 818 Azalea 1242 Dove 818 Azalea 1242 Dove 820 Azalea 1262 Dove 821 Azalea 1265 Dove 831 Azalea 1267 Dove 832 Azalea 1298 Eagle 834 Azalea 1298 Eagle 835 Azalea 1300 Eagle 841 Azalea 1303 Eagle 853 Dolphin 1304 Eagle 858 Dolphin 1315 Albatross 869 Cobia 1320 Albatross 874 Cobia 1320 Albatross	761 Althea	1173 Bobwhite
807 Azalea 1238 Dove 814 Azalea 1241 Dove 815 Azalea 1242 Dove 818 Azalea 1242 Dove 818 Azalea 1248 Dove 820 Azalea 1262 Dove 821 Azalea 1265 Dove 831 Azalea 1267 Dove 832 Azalea 1267 Dove 834 Azalea 1267 Dove 835 Azalea 1289 Eagle 835 Azalea 1300 Eagle 841 Azalea 1303 Eagle 853 Dolphin 1315 Albatross 869 Cobia 1316 Albatross 874 Cobia 1320 Albatross	773 Althea	1200 Cardinal
814 Azalea1241 Dove815 Azalea1242 Dove818 Azalea1248 Dove818 Azalea1248 Dove820 Azalea1262 Dove821 Azalea1265 Dove831 Azalea1267 Dove832 Azalea1289 Eagle834 Azalea1298 Eagle835 Azalea1300 Eagle841 Azalea1303 Eagle853 Dolphin1315 Albatross869 Cobia1320 Albatross874 Cobia1320 Albatross	778 Laurel Bay	1221 Cardinal
815 Azalea1242 Dove818 Azalea1248 Dove820 Azalea1262 Dove821 Azalea1265 Dove831 Azalea1267 Dove832 Azalea1289 Eagle834 Azalea1298 Eagle835 Azalea1300 Eagle841 Azalea1303 Eagle853 Dolphin1315 Albatross869 Cobia1320 Albatross874 Cobia1320 Albatross	807 Azalea	1238 Dove
818 Azalea1248 Dove820 Azalea1262 Dove821 Azalea1265 Dove831 Azalea1267 Dove832 Azalea1289 Eagle834 Azalea1298 Eagle835 Azalea1300 Eagle841 Azalea1303 Eagle853 Dolphin1304 Eagle858 Dolphin1315 Albatross869 Cobia1320 Albatross874 Cobia1320 Albatross	814 Azalea	1241 Dove
820 Azalea1262 Dove821 Azalea1265 Dove831 Azalea1267 Dove832 Azalea1289 Eagle834 Azalea1298 Eagle835 Azalea1300 Eagle841 Azalea1303 Eagle853 Dolphin1304 Eagle858 Dolphin1315 Albatross869 Cobia1320 Albatross874 Cobia1320 Albatross	815 Azalea	1242 Dove
821 Azalea1265 Dove831 Azalea1267 Dove832 Azalea1289 Eagle834 Azalea1298 Eagle835 Azalea1300 Eagle841 Azalea1303 Eagle853 Dolphin1304 Eagle858 Dolphin1315 Albatross869 Cobia1320 Albatross874 Cobia1320 Albatross	818 Azalea	1248 Dove
831 Azalea1267 Dove832 Azalea1289 Eagle834 Azalea1298 Eagle835 Azalea1300 Eagle841 Azalea1303 Eagle853 Dolphin1304 Eagle858 Dolphin1315 Albatross869 Cobia1316 Albatross874 Cobia1320 Albatross	820 Azalea	1262 Dove
832 Azalea1289 Eagle834 Azalea1298 Eagle835 Azalea1300 Eagle841 Azalea1303 Eagle853 Dolphin1304 Eagle858 Dolphin1315 Albatross869 Cobia1316 Albatross874 Cobia1320 Albatross	821 Azalea	1265 Dove
834 Azalea1298 Eagle835 Azalea1300 Eagle841 Azalea1303 Eagle853 Dolphin1304 Eagle858 Dolphin1315 Albatross869 Cobia1316 Albatross874 Cobia1320 Albatross	831 Azalea	1267 Dove
835 Azalea1300 Eagle841 Azalea1303 Eagle853 Dolphin1304 Eagle858 Dolphin1315 Albatross869 Cobia1316 Albatross874 Cobia1320 Albatross	832 Azalea	1289 Eagle
835 Azalea 1300 Eagle 841 Azalea 1303 Eagle 853 Dolphin 1304 Eagle 858 Dolphin 1315 Albatross 869 Cobia 1316 Albatross 874 Cobia 1320 Albatross	834 Azalea	1298 Eagle
841 Azalea 1303 Eagle 853 Dolphin 1304 Eagle 858 Dolphin 1315 Albatross 869 Cobia 1316 Albatross 874 Cobia 1320 Albatross	835 Azalea	
853 Dolphin1304 Eagle858 Dolphin1315 Albatross869 Cobia1316 Albatross874 Cobia1320 Albatross		
858 Dolphin1315 Albatross869 Cobia1316 Albatross874 Cobia1320 Albatross		
869 Cobia1316 Albatross874 Cobia1320 Albatross		
874 Cobia 1320 Albatross		
	875 Cobia	1338 Albatross

Laurel Bay Underground Storage Tank Assessment Reports for: (143 addresses/146 tanks) cont.

1340 Albatross	
1342 Albatross	
1344 Cardinal	
1345 Cardinal	
1349 Cardinal	
1355 Cardinal	
1366 Cardinal	
1374 Dove	
1375 Dove	
1415 Albatross	